Harry Mellor d6953beb91
Convert formatting to use ruff instead of yapf + isort (#26247)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-10-05 07:06:22 -07:00

139 lines
4.0 KiB
Python

# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
from typing import Optional
import pytest
import torch
from vllm.multimodal.image import rescale_image_size
from ...conftest import IMAGE_ASSETS, ImageTestAssets, VllmRunner
from ..utils import check_logprobs_close
HF_IMAGE_PROMPTS = IMAGE_ASSETS.prompts(
{
"stop_sign": "<|im_start|>User\n<image>\nWhat's the content in the center of the image?<|im_end|>\n<|im_start|>Assistant\n", # noqa: E501
"cherry_blossom": "<|im_start|>User\n<image>\nWhat is the season?<|im_end|>\n<|im_start|>Assistant\n", # noqa: E501
}
)
def run_awq_test(
vllm_runner: type[VllmRunner],
image_assets: ImageTestAssets,
source_model: str,
quant_model: str,
*,
size_factors: list[float],
dtype: str,
max_tokens: int,
num_logprobs: int,
tensor_parallel_size: int,
distributed_executor_backend: Optional[str] = None,
):
images = [asset.pil_image for asset in image_assets]
inputs_per_image = [
(
[prompt for _ in size_factors],
[rescale_image_size(image, factor) for factor in size_factors],
)
for image, prompt in zip(images, HF_IMAGE_PROMPTS)
]
# NOTE: take care of the order. run vLLM first, and then run HF.
# vLLM needs a fresh new process without cuda initialization.
# if we run HF first, the cuda initialization will be done and it
# will hurt multiprocessing backend with fork method (the default method).
# max_model_len should be greater than image_feature_size
with vllm_runner(
source_model,
max_model_len=4096,
dtype=dtype,
tensor_parallel_size=tensor_parallel_size,
distributed_executor_backend=distributed_executor_backend,
enforce_eager=True,
default_torch_num_threads=1,
) as vllm_model:
source_outputs_per_image = [
vllm_model.generate_greedy_logprobs(
prompts, max_tokens, num_logprobs=num_logprobs, images=images
)
for prompts, images in inputs_per_image
]
with vllm_runner(
quant_model,
quantization="awq",
max_model_len=4096,
dtype=dtype,
tensor_parallel_size=tensor_parallel_size,
distributed_executor_backend=distributed_executor_backend,
enforce_eager=True,
default_torch_num_threads=1,
) as vllm_model:
quant_outputs_per_image = [
vllm_model.generate_greedy_logprobs(
prompts, max_tokens, num_logprobs=num_logprobs, images=images
)
for prompts, images in inputs_per_image
]
for source_outputs, quant_outputs in zip(
source_outputs_per_image, quant_outputs_per_image
):
# TODO: Check whether using original CLIPVisionModel can improve
# consistency against HF
check_logprobs_close(
outputs_0_lst=source_outputs,
outputs_1_lst=quant_outputs,
name_0="source",
name_1="awq",
)
@pytest.mark.parametrize(
("source_model", "quant_model"),
[("OpenGVLab/InternVL2-2B", "OpenGVLab/InternVL2-2B-AWQ")],
)
@pytest.mark.parametrize(
"size_factors",
[
# No image
[],
# Single-scale
[1.0],
# Single-scale, batched
[1.0, 1.0, 1.0],
# Multi-scale
[0.25, 0.5, 1.0],
],
)
@pytest.mark.parametrize("dtype", ["half"])
@pytest.mark.parametrize("max_tokens", [128])
@pytest.mark.parametrize("num_logprobs", [5])
@torch.inference_mode()
def test_awq_models(
vllm_runner,
image_assets,
source_model,
quant_model,
size_factors,
dtype,
max_tokens,
num_logprobs,
) -> None:
run_awq_test(
vllm_runner,
image_assets,
source_model,
quant_model,
size_factors=size_factors,
dtype=dtype,
max_tokens=max_tokens,
num_logprobs=num_logprobs,
tensor_parallel_size=1,
)