vllm/vllm/v1/sample/sampler.py
Nick Hill d44a63c6d6
[BugFix] Fix returned logprobs with spec decode + prefill chunking (#29216)
Signed-off-by: Nick Hill <nhill@redhat.com>
2025-11-22 22:41:25 +08:00

320 lines
12 KiB
Python

# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
"""A layer that samples the next tokens from the model's outputs."""
import torch
import torch.nn as nn
from vllm.config.model import LogprobsMode
from vllm.utils.platform_utils import is_pin_memory_available
from vllm.v1.outputs import LogprobsTensors, SamplerOutput
from vllm.v1.sample.metadata import SamplingMetadata
from vllm.v1.sample.ops.bad_words import apply_bad_words
from vllm.v1.sample.ops.logprobs import batched_count_greater_than
from vllm.v1.sample.ops.penalties import apply_all_penalties
from vllm.v1.sample.ops.topk_topp_sampler import TopKTopPSampler
_SAMPLING_EPS = 1e-5
class Sampler(nn.Module):
"""
A layer that samples the next tokens from the model's outputs
with the following steps in order:
1. If logprobs are requested:
a) If `logprobs_mode` is `raw_logprobs`, compute logprobs
as the final logprobs to return.
b) If `logprobs_mode` is `raw_logits`, clone the logits
as the final logprobs to return.
2. Convert logits to float32.
3. Apply allowed token ids whitelist.
4. Apply bad words exclusion.
5. Apply logit processors which are not argmax-invariant,
i.e. that can impact greedy sampling.
a) Min tokens processor
b) Logit bias processor
6. Apply penalties
a) Repetition penalty
b) Frequency penalty
c) Presence penalty
7. Sample the next tokens. `sample` method performs the following steps:
a) If not `all_random`, perform greedy sampling. If `all_greedy`,
return the greedily sampled tokens and final logprobs if requested.
b) Apply temperature.
c) Apply logit processors which are argmax-invariant, by default
the min_p processor.
d) Apply top_k and/or top_p.
e) Sample the next tokens with the probability distribution.
f) If `all_random` or temperature >= epsilon (1e-5), return the
randomly sampled tokens and final logprobs if requested. Else,
return the greedily sampled tokens and logprobs if requested.
8. Gather the logprobs of the top `max_num_logprobs` and sampled token
(if requested). Note that if the sampled token is within the top
`max_num_logprobs`, the logprob will be eventually merged in
`LogprobsProcessor` during output processing. Therefore, the
final output may contain either `max_num_logprobs + 1` or
`max_num_logprobs` logprobs.
9. Return the final `SamplerOutput`.
"""
def __init__(self, logprobs_mode: LogprobsMode = "raw_logprobs"):
super().__init__()
self.topk_topp_sampler = TopKTopPSampler(logprobs_mode)
self.pin_memory = is_pin_memory_available()
self.logprobs_mode = logprobs_mode
def forward(
self,
logits: torch.Tensor,
sampling_metadata: SamplingMetadata,
predict_bonus_token: bool = False,
logprobs_mode_override: LogprobsMode | None = None,
) -> SamplerOutput:
logprobs_mode = logprobs_mode_override or self.logprobs_mode
# NOTE(woosuk): Use the original logits (before any penalties or
# temperature scaling) for the top-k logprobs.
# This is different from the V0 sampler, which uses the logits that
# is used for sampling (after penalties and temperature scaling).
num_logprobs = sampling_metadata.max_num_logprobs
if num_logprobs is not None:
if logprobs_mode == "raw_logprobs":
raw_logprobs = self.compute_logprobs(logits)
elif logprobs_mode == "raw_logits":
if logits.dtype == torch.float32:
raw_logprobs = logits.clone()
else:
raw_logprobs = logits.to(torch.float32)
# Use float32 for the logits.
logits = logits.to(torch.float32)
logits = self.apply_logits_processors(
logits, sampling_metadata, predict_bonus_token
)
# Sample the next token.
sampled, processed_logprobs = self.sample(logits, sampling_metadata)
if processed_logprobs is not None:
raw_logprobs = processed_logprobs
# Convert sampled token ids to int64 (long) type to ensure compatibility
# with subsequent operations that may use these values as indices.
# This conversion is necessary because FlashInfer sampling operations
# return int32 (while PyTorch argmax and topk return int64).
sampled = sampled.long()
if num_logprobs is None:
logprobs_tensors = None
elif num_logprobs == -1:
# Return the full unsorted and unranked logprobs.
logprobs_tensors = LogprobsTensors(
torch.empty(0), raw_logprobs, torch.empty(0)
)
else:
# Gather the logprobs and ranks of the topk and sampled token.
logprobs_tensors = self.gather_logprobs(
raw_logprobs, num_logprobs, token_ids=sampled
)
# Use int32 to reduce the tensor size.
sampled = sampled.to(torch.int32)
# These are GPU tensors.
sampler_output = SamplerOutput(
# The sampled tokens are expanded to 2D tensor with shape
# [num_requests, 1], where each row represents one generated
# token per request.
sampled_token_ids=sampled.unsqueeze(-1),
logprobs_tensors=logprobs_tensors,
)
return sampler_output
@staticmethod
def apply_temperature(
logits: torch.Tensor,
temp: torch.Tensor,
all_random: bool,
) -> torch.Tensor:
# Use in-place division to avoid creating a new tensor.
# Avoid division by zero if there are greedy requests.
if not all_random:
temp = torch.where(temp < _SAMPLING_EPS, 1.0, temp)
return logits.div_(temp.unsqueeze(dim=1))
@staticmethod
def greedy_sample(logits: torch.Tensor) -> torch.Tensor:
return logits.argmax(dim=-1).view(-1)
def sample(
self,
logits: torch.Tensor,
sampling_metadata: SamplingMetadata,
logprobs_mode_override: LogprobsMode | None = None,
) -> tuple[torch.Tensor, torch.Tensor | None]:
"""Sample logits based on sampling metadata.
The various logits processing functions called in this method
may update the logits tensor in-place.
"""
logprobs_mode = logprobs_mode_override or self.logprobs_mode
assert not (sampling_metadata.all_greedy and sampling_metadata.all_random)
if sampling_metadata.all_random:
greedy_sampled = None
else:
greedy_sampled = self.greedy_sample(logits)
if sampling_metadata.all_greedy:
processed_logprobs = None
if sampling_metadata.max_num_logprobs is not None:
if logprobs_mode == "processed_logits":
processed_logprobs = logits
elif logprobs_mode == "processed_logprobs":
processed_logprobs = self.compute_logprobs(logits)
return greedy_sampled, processed_logprobs
assert sampling_metadata.temperature is not None
# Apply temperature.
logits = self.apply_temperature(
logits, sampling_metadata.temperature, sampling_metadata.all_random
)
# Apply logits processors that only apply to random sampling
# (argmax invariant)
for processor in sampling_metadata.logitsprocs.argmax_invariant:
logits = processor.apply(logits)
# Apply top_k and/or top_p.
random_sampled, processed_logprobs = self.topk_topp_sampler(
logits,
sampling_metadata.generators,
sampling_metadata.top_k,
sampling_metadata.top_p,
)
if greedy_sampled is None:
return random_sampled, processed_logprobs
sampled = torch.where(
sampling_metadata.temperature < _SAMPLING_EPS,
greedy_sampled,
random_sampled,
out=greedy_sampled, # Reuse tensor
)
return sampled, processed_logprobs
@staticmethod
def compute_logprobs(logits: torch.Tensor) -> torch.Tensor:
return logits.log_softmax(dim=-1, dtype=torch.float32)
@staticmethod
def gather_logprobs(
logprobs: torch.Tensor,
num_logprobs: int,
token_ids: torch.Tensor,
) -> LogprobsTensors:
"""
Gather logprobs for topk and sampled/prompt token.
Args:
logprobs: (num tokens) x (vocab) tensor
num_logprobs: minimum number of logprobs to
retain per token
token_ids: prompt tokens (if prompt logprobs)
or sampled tokens (if sampled
logprobs); 1D token ID tensor
with (num tokens) elements
Must be int64.
Returns:
Top-k int indices tensor, (num tokens) x (num_logprobs + 1)
Top-k float logprobs tensor, (num tokens) x (num_logprobs + 1)
Sampled token rank tensor, (num tokens)
"""
assert token_ids.dtype == torch.int64
# Find the topK values.
topk_logprobs, topk_indices = torch.topk(logprobs, num_logprobs, dim=-1)
# Get with the logprob of the prompt or sampled token.
token_ids = token_ids.unsqueeze(-1)
token_logprobs = logprobs.gather(-1, token_ids)
# Compute the ranks of the actual token.
token_ranks = batched_count_greater_than(logprobs, token_logprobs)
# Concatenate together with the topk.
indices = torch.cat((token_ids, topk_indices), dim=1)
logprobs = torch.cat((token_logprobs, topk_logprobs), dim=1)
# Use int32 to reduce the tensor size.
indices = indices.to(torch.int32)
return LogprobsTensors(indices, logprobs, token_ranks)
@staticmethod
def _combine_outputs_with_spec_tokens(
output_token_ids: list[list[int]],
spec_token_ids: list[list[int]] | None = None,
) -> list[list[int]]:
if spec_token_ids is None:
return output_token_ids
return [
[*out, *spec] if spec else out
for out, spec in zip(output_token_ids, spec_token_ids)
]
def apply_logits_processors(
self,
logits: torch.Tensor,
sampling_metadata: SamplingMetadata,
predict_bonus_token: bool,
) -> torch.Tensor:
bad_words_token_ids = sampling_metadata.bad_words_token_ids
any_penalties_or_bad_words = (
bool(bad_words_token_ids) or not sampling_metadata.no_penalties
)
output_token_ids = sampling_metadata.output_token_ids
if predict_bonus_token and any_penalties_or_bad_words:
# Combine base outputs with spec tokens when speculative decoding
# is enabled.
output_token_ids = self._combine_outputs_with_spec_tokens(
output_token_ids,
sampling_metadata.spec_token_ids,
)
# Apply allowed token ids.
if sampling_metadata.allowed_token_ids_mask is not None:
logits.masked_fill_(sampling_metadata.allowed_token_ids_mask, float("-inf"))
# Apply bad words exclusion.
if bad_words_token_ids:
apply_bad_words(logits, bad_words_token_ids, output_token_ids)
# Apply logits processors which can impact greedy sampling.
for processor in sampling_metadata.logitsprocs.non_argmax_invariant:
logits = processor.apply(logits)
# Apply penalties (e.g., freq_penalties).
logits = self.apply_penalties(logits, sampling_metadata, output_token_ids)
return logits
@staticmethod
def apply_penalties(
logits: torch.Tensor,
sampling_metadata: SamplingMetadata,
output_token_ids: list[list[int]],
) -> torch.Tensor:
if sampling_metadata.no_penalties:
return logits
assert sampling_metadata.prompt_token_ids is not None
return apply_all_penalties(
logits,
sampling_metadata.prompt_token_ids,
sampling_metadata.presence_penalties,
sampling_metadata.frequency_penalties,
sampling_metadata.repetition_penalties,
output_token_ids,
)