mirror of
https://git.datalinker.icu/vllm-project/vllm.git
synced 2025-12-19 03:17:25 +08:00
924 lines
32 KiB
Python
924 lines
32 KiB
Python
# SPDX-License-Identifier: Apache-2.0
|
|
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
|
|
|
import math
|
|
from collections.abc import Iterable, Mapping, Sequence
|
|
from typing import Annotated, Final, Literal, Protocol, TypeAlias
|
|
|
|
import torch
|
|
import torch.nn as nn
|
|
from transformers import BatchFeature, LlavaOnevisionConfig, LlavaOnevisionProcessor
|
|
from transformers.models.llava_onevision.modeling_llava_onevision import (
|
|
get_anyres_image_grid_shape,
|
|
unpad_image,
|
|
)
|
|
|
|
from vllm.config import VllmConfig
|
|
from vllm.config.multimodal import BaseDummyOptions
|
|
from vllm.model_executor.layers.activation import get_act_fn
|
|
from vllm.multimodal import MULTIMODAL_REGISTRY
|
|
from vllm.multimodal.inputs import (
|
|
MultiModalDataDict,
|
|
MultiModalFieldConfig,
|
|
MultiModalKwargsItems,
|
|
)
|
|
from vllm.multimodal.parse import (
|
|
ImageSize,
|
|
MultiModalDataItems,
|
|
VideoEmbeddingItems,
|
|
VideoProcessorItems,
|
|
)
|
|
from vllm.multimodal.processing import PromptReplacement, PromptUpdate
|
|
from vllm.sequence import IntermediateTensors
|
|
from vllm.utils.tensor_schema import TensorSchema, TensorShape
|
|
|
|
from .clip import CLIPVisionModel
|
|
from .interfaces import MultiModalEmbeddings, SupportsMultiModal, SupportsPP
|
|
from .llava import LlavaDummyInputsBuilder, init_vision_tower_for_llava
|
|
from .llava_next import (
|
|
BaseLlavaNextMultiModalProcessor,
|
|
LlavaNextLikeConfig,
|
|
LlavaNextProcessingInfo,
|
|
)
|
|
from .siglip import SiglipVisionModel
|
|
from .utils import (
|
|
AutoWeightsLoader,
|
|
WeightsMapper,
|
|
init_vllm_registered_model,
|
|
maybe_prefix,
|
|
)
|
|
|
|
# For profile run
|
|
_MAX_FRAMES_PER_VIDEO = 16
|
|
|
|
|
|
class LlavaOnevisionVideoPixelInputs(TensorSchema):
|
|
"""
|
|
Dimensions:
|
|
- bn: Batch size * number of videos
|
|
- f: Number of frames
|
|
- c: Number of channels (3)
|
|
- h: Height
|
|
- w: Width
|
|
|
|
Note that `f` may be different for each batch, and 'num_frames'
|
|
may be different for each video, in which case the data is passed as a
|
|
list instead of a batched tensor.
|
|
"""
|
|
|
|
type: Literal["pixel_values_videos"] = "pixel_values_videos"
|
|
|
|
pixel_values_videos: Annotated[
|
|
torch.Tensor | list[torch.Tensor],
|
|
TensorShape("bn", "f", 3, "h", "w", dynamic_dims={"f"}),
|
|
]
|
|
|
|
|
|
class LlavaOnevisionImagePixelInputs(TensorSchema):
|
|
"""
|
|
Dimensions:
|
|
- bn: Batch size * number of images
|
|
- np: Number of patches (1 + num_patches)
|
|
- c: Number of channels (3)
|
|
- h: Height
|
|
- w: Width
|
|
|
|
Note that `num_patches` may be different per batch and image,
|
|
in which case the data is passed as a list instead of a batched tensor.
|
|
"""
|
|
|
|
type: Literal["pixel_values"] = "pixel_values"
|
|
|
|
pixel_values: Annotated[
|
|
torch.Tensor | list[torch.Tensor],
|
|
TensorShape("bn", "np", 3, "h", "w", dynamic_dims={"np"}),
|
|
]
|
|
|
|
image_sizes: Annotated[torch.Tensor | None, TensorShape("bn", 2)]
|
|
|
|
|
|
class LlavaOnevisionImageEmbeddingInputs(TensorSchema):
|
|
"""
|
|
Dimensions:
|
|
- bn: Batch size * number of images
|
|
- ifs: Image feature size
|
|
- hs: Hidden size (must match language model backbone)
|
|
"""
|
|
|
|
type: Literal["image_embeds"] = "image_embeds"
|
|
|
|
data: Annotated[
|
|
torch.Tensor,
|
|
TensorShape("bn", "ifs", "hs"),
|
|
]
|
|
|
|
|
|
LlavaOnevisionImageInputs: TypeAlias = (
|
|
LlavaOnevisionImagePixelInputs | LlavaOnevisionImageEmbeddingInputs
|
|
)
|
|
|
|
LlavaOnevisionMultiInputs: TypeAlias = (
|
|
LlavaOnevisionImageInputs | LlavaOnevisionVideoPixelInputs
|
|
)
|
|
|
|
|
|
class LlavaOnevisionLikeConfig(LlavaNextLikeConfig, Protocol):
|
|
video_token_index: Final[int]
|
|
|
|
|
|
class LlavaOnevisionProcessingInfo(LlavaNextProcessingInfo):
|
|
def get_hf_config(self) -> LlavaOnevisionLikeConfig:
|
|
return self.ctx.get_hf_config(LlavaOnevisionConfig)
|
|
|
|
def get_hf_processor(self, **kwargs: object):
|
|
return self.ctx.get_hf_processor(LlavaOnevisionProcessor, **kwargs)
|
|
|
|
def get_supported_mm_limits(self) -> Mapping[str, int | None]:
|
|
return {"image": None, "video": None}
|
|
|
|
# Based on: https://github.com/huggingface/text-generation-inference/blob/v3.0.1/server/text_generation_server/models/vlm_causal_lm.py#L86
|
|
# with additional logic afterwards taken from LlavaOnevisionProcessor
|
|
def _get_num_unpadded_features(
|
|
self,
|
|
*,
|
|
original_height: int,
|
|
original_width: int,
|
|
npatches: int,
|
|
num_patch_height: int,
|
|
num_patch_width: int,
|
|
) -> tuple[int, int]:
|
|
current_height = npatches * num_patch_height
|
|
current_width = npatches * num_patch_width
|
|
|
|
aspect_ratio = original_width / original_height
|
|
current_aspect_ratio = current_width / current_height
|
|
|
|
if aspect_ratio > current_aspect_ratio:
|
|
new_height = int(
|
|
round(original_height * (current_width / original_width), 7)
|
|
)
|
|
padding = (current_height - new_height) // 2
|
|
current_height = current_height - (2 * padding)
|
|
else:
|
|
new_width = int(
|
|
round(original_width * (current_height / original_height), 7)
|
|
)
|
|
padding = (current_width - new_width) // 2
|
|
current_width = current_width - (2 * padding)
|
|
|
|
unpadded_features = current_height * current_width
|
|
newline_features = current_height
|
|
|
|
ratio = math.sqrt(current_height * current_width / (9 * npatches**2))
|
|
if ratio > 1.1:
|
|
height_factor = int(current_height // ratio)
|
|
width_factor = int(current_width // ratio)
|
|
unpadded_features = height_factor * width_factor
|
|
newline_features = height_factor
|
|
|
|
return (unpadded_features, newline_features)
|
|
|
|
def get_image_size_with_most_features(self) -> ImageSize:
|
|
# NOTE: This hardcoded value is found via processor tests
|
|
return ImageSize(width=1153, height=944)
|
|
|
|
def _get_num_frame_tokens(
|
|
self,
|
|
*,
|
|
image_width: int,
|
|
image_height: int,
|
|
) -> int:
|
|
hf_config = self.get_hf_config()
|
|
spatial_pool_stride = getattr(hf_config, "spatial_pool_stride", 2)
|
|
|
|
vision_encoder_info = self.get_vision_encoder_info()
|
|
patch_grid_length = vision_encoder_info.get_patch_grid_length()
|
|
pooled_grid_length = math.ceil(patch_grid_length / spatial_pool_stride)
|
|
|
|
return pooled_grid_length * pooled_grid_length
|
|
|
|
def get_num_video_tokens(
|
|
self,
|
|
*,
|
|
image_width: int,
|
|
image_height: int,
|
|
num_frames: int,
|
|
) -> int:
|
|
num_frame_tokens = self._get_num_frame_tokens(
|
|
image_width=image_width,
|
|
image_height=image_height,
|
|
)
|
|
|
|
return num_frame_tokens * num_frames + 1 # Newline token
|
|
|
|
def _get_max_video_frames(self, max_tokens: int) -> int:
|
|
target_width, target_height = self.get_image_size_with_most_features()
|
|
|
|
num_frames = 0
|
|
|
|
while True:
|
|
next_num_frames = num_frames + 1
|
|
next_max_tokens = self.get_num_video_tokens(
|
|
image_width=target_width,
|
|
image_height=target_height,
|
|
num_frames=next_num_frames,
|
|
)
|
|
|
|
if next_max_tokens > max_tokens:
|
|
break
|
|
|
|
num_frames = next_num_frames
|
|
|
|
return num_frames
|
|
|
|
def get_num_frames_with_most_features(
|
|
self,
|
|
seq_len: int,
|
|
mm_counts: Mapping[str, int],
|
|
) -> int:
|
|
max_videos = mm_counts.get("video", 0)
|
|
|
|
max_total_frames = self._get_max_video_frames(seq_len)
|
|
max_frames_per_video = min(
|
|
max_total_frames // max(max_videos, 1), _MAX_FRAMES_PER_VIDEO
|
|
)
|
|
|
|
return max(max_frames_per_video, 1)
|
|
|
|
def get_max_video_tokens(
|
|
self,
|
|
seq_len: int,
|
|
mm_counts: Mapping[str, int],
|
|
) -> int:
|
|
target_width, target_height = self.get_image_size_with_most_features()
|
|
|
|
return self.get_num_video_tokens(
|
|
image_width=target_width,
|
|
image_height=target_height,
|
|
num_frames=self.get_num_frames_with_most_features(seq_len, mm_counts),
|
|
)
|
|
|
|
|
|
class LlavaOnevisionDummyInputsBuilder(
|
|
LlavaDummyInputsBuilder[LlavaOnevisionProcessingInfo]
|
|
):
|
|
def get_dummy_text(self, mm_counts: Mapping[str, int]) -> str:
|
|
num_images = mm_counts.get("image", 0)
|
|
num_videos = mm_counts.get("video", 0)
|
|
|
|
processor = self.info.get_hf_processor()
|
|
image_token = processor.image_token
|
|
video_token = processor.video_token
|
|
|
|
return image_token * num_images + video_token * num_videos
|
|
|
|
def get_dummy_mm_data(
|
|
self,
|
|
seq_len: int,
|
|
mm_counts: Mapping[str, int],
|
|
mm_options: Mapping[str, BaseDummyOptions] | None = None,
|
|
) -> MultiModalDataDict:
|
|
num_images = mm_counts.get("image", 0)
|
|
num_videos = mm_counts.get("video", 0)
|
|
|
|
target_width, target_height = self.info.get_image_size_with_most_features()
|
|
target_num_frames = self.info.get_num_frames_with_most_features(
|
|
seq_len, mm_counts
|
|
)
|
|
|
|
image_overrides = mm_options.get("image") if mm_options else None
|
|
video_overrides = mm_options.get("video") if mm_options else None
|
|
|
|
return {
|
|
"image": self._get_dummy_images(
|
|
width=target_width,
|
|
height=target_height,
|
|
num_images=num_images,
|
|
overrides=image_overrides,
|
|
),
|
|
"video": self._get_dummy_videos(
|
|
width=target_width,
|
|
height=target_height,
|
|
num_frames=target_num_frames,
|
|
num_videos=num_videos,
|
|
overrides=video_overrides,
|
|
),
|
|
}
|
|
|
|
|
|
class LlavaOnevisionMultiModalProcessor(
|
|
BaseLlavaNextMultiModalProcessor[LlavaOnevisionProcessingInfo]
|
|
):
|
|
def _get_mm_fields_config(
|
|
self,
|
|
hf_inputs: BatchFeature,
|
|
hf_processor_mm_kwargs: Mapping[str, object],
|
|
) -> Mapping[str, MultiModalFieldConfig]:
|
|
return dict(
|
|
pixel_values=MultiModalFieldConfig.batched("image"),
|
|
image_sizes=MultiModalFieldConfig.batched("image"),
|
|
image_embeds=MultiModalFieldConfig.batched("image"),
|
|
pixel_values_videos=MultiModalFieldConfig.batched("video"),
|
|
)
|
|
|
|
def _call_hf_processor(
|
|
self,
|
|
prompt: str,
|
|
mm_data: Mapping[str, object],
|
|
mm_kwargs: Mapping[str, object],
|
|
tok_kwargs: Mapping[str, object],
|
|
) -> BatchFeature:
|
|
mm_data = dict(mm_data)
|
|
videos = mm_data.pop("videos", [])
|
|
assert isinstance(videos, list)
|
|
|
|
if not videos:
|
|
return super()._call_hf_processor(
|
|
prompt=prompt,
|
|
mm_data=mm_data,
|
|
mm_kwargs=mm_kwargs,
|
|
tok_kwargs=tok_kwargs,
|
|
)
|
|
|
|
# LLaVA-OneVision processor doesn't support multiple videos
|
|
# with different sizes when converting back to tensors
|
|
# So, we process each component separately
|
|
# NOTE: No prompt replacement is applied in this case
|
|
processor = self.info.get_hf_processor()
|
|
image_token = processor.image_token
|
|
video_token = processor.video_token
|
|
|
|
text_outputs = super()._call_hf_processor(
|
|
prompt=prompt,
|
|
mm_data={},
|
|
mm_kwargs=mm_kwargs,
|
|
tok_kwargs=tok_kwargs,
|
|
)
|
|
|
|
images = mm_data.pop("images", [])
|
|
assert isinstance(images, list)
|
|
if images:
|
|
processor_outputs = super()._call_hf_processor(
|
|
prompt=image_token * len(images),
|
|
mm_data={"images": images},
|
|
mm_kwargs=mm_kwargs,
|
|
tok_kwargs=tok_kwargs,
|
|
)
|
|
image_outputs = {
|
|
k: v
|
|
for k, v in processor_outputs.items()
|
|
if k in ("pixel_values", "image_sizes")
|
|
}
|
|
else:
|
|
image_outputs = {}
|
|
|
|
pixel_values_videos = []
|
|
for video in videos:
|
|
item_outputs = super()._call_hf_processor(
|
|
prompt=video_token,
|
|
mm_data={"videos": video},
|
|
mm_kwargs=mm_kwargs,
|
|
tok_kwargs=tok_kwargs,
|
|
)
|
|
|
|
pixel_values_videos.append(item_outputs["pixel_values_videos"][0])
|
|
|
|
video_outputs = {"pixel_values_videos": pixel_values_videos}
|
|
|
|
combined_outputs = dict(
|
|
text_outputs,
|
|
**image_outputs,
|
|
**video_outputs,
|
|
)
|
|
return BatchFeature(combined_outputs)
|
|
|
|
def _hf_processor_applies_updates(
|
|
self,
|
|
prompt_text: str,
|
|
mm_items: MultiModalDataItems,
|
|
hf_processor_mm_kwargs: Mapping[str, object],
|
|
tokenization_kwargs: Mapping[str, object],
|
|
) -> bool:
|
|
base_result = super()._hf_processor_applies_updates(
|
|
prompt_text=prompt_text,
|
|
mm_items=mm_items,
|
|
hf_processor_mm_kwargs=hf_processor_mm_kwargs,
|
|
tokenization_kwargs=tokenization_kwargs,
|
|
)
|
|
|
|
return base_result and mm_items.get_count("video", strict=False) == 0
|
|
|
|
def _get_prompt_updates(
|
|
self,
|
|
mm_items: MultiModalDataItems,
|
|
hf_processor_mm_kwargs: Mapping[str, object],
|
|
out_mm_kwargs: MultiModalKwargsItems,
|
|
) -> Sequence[PromptUpdate]:
|
|
image_repls = super()._get_prompt_updates(
|
|
mm_items=mm_items,
|
|
hf_processor_mm_kwargs=hf_processor_mm_kwargs,
|
|
out_mm_kwargs=out_mm_kwargs,
|
|
)
|
|
|
|
hf_config = self.info.get_hf_config()
|
|
video_token_id = hf_config.video_token_index
|
|
|
|
def get_video_replacement(item_idx: int):
|
|
videos = mm_items.get_items(
|
|
"video", (VideoEmbeddingItems, VideoProcessorItems)
|
|
)
|
|
|
|
if isinstance(videos, VideoEmbeddingItems):
|
|
num_video_tokens = videos.get_feature_size(item_idx)
|
|
else:
|
|
image_size = videos.get_frame_size(item_idx)
|
|
num_video_tokens = self.info.get_num_video_tokens(
|
|
image_width=image_size.width,
|
|
image_height=image_size.height,
|
|
num_frames=videos.get_num_frames(item_idx),
|
|
)
|
|
|
|
return [video_token_id] * num_video_tokens
|
|
|
|
return [
|
|
*image_repls,
|
|
PromptReplacement(
|
|
modality="video",
|
|
target=[video_token_id],
|
|
replacement=get_video_replacement,
|
|
),
|
|
]
|
|
|
|
|
|
class LlavaOnevisionMultiModalProjector(nn.Module):
|
|
def __init__(self, config: LlavaOnevisionConfig):
|
|
super().__init__()
|
|
|
|
self.linear_1 = nn.Linear(
|
|
config.vision_config.hidden_size,
|
|
config.text_config.hidden_size,
|
|
bias=config.multimodal_projector_bias,
|
|
)
|
|
self.act = get_act_fn(config.projector_hidden_act)
|
|
self.linear_2 = nn.Linear(
|
|
config.text_config.hidden_size,
|
|
config.text_config.hidden_size,
|
|
bias=config.multimodal_projector_bias,
|
|
)
|
|
|
|
def forward(self, image_features: torch.Tensor) -> torch.Tensor:
|
|
hidden_states = self.linear_1(image_features)
|
|
hidden_states = self.act(hidden_states)
|
|
hidden_states = self.linear_2(hidden_states)
|
|
return hidden_states
|
|
|
|
|
|
@MULTIMODAL_REGISTRY.register_processor(
|
|
LlavaOnevisionMultiModalProcessor,
|
|
info=LlavaOnevisionProcessingInfo,
|
|
dummy_inputs=LlavaOnevisionDummyInputsBuilder,
|
|
)
|
|
class LlavaOnevisionForConditionalGeneration(nn.Module, SupportsMultiModal, SupportsPP):
|
|
merge_by_field_config = True
|
|
|
|
hf_to_vllm_mapper = WeightsMapper(
|
|
orig_to_new_prefix={
|
|
# mapping for new names in checkpoint saved after transformers v4.52
|
|
"model.language_model.": "language_model.model.",
|
|
"model.vision_tower.": "vision_tower.",
|
|
"model.multi_modal_projector.": "multi_modal_projector.",
|
|
"model.image_newline": "image_newline",
|
|
"lm_head.": "language_model.lm_head.",
|
|
}
|
|
)
|
|
|
|
@classmethod
|
|
def get_placeholder_str(cls, modality: str, i: int) -> str | None:
|
|
if modality.startswith("image"):
|
|
return "<image>"
|
|
if modality.startswith("video"):
|
|
return "<video>"
|
|
|
|
raise ValueError("Only image or video modality is supported")
|
|
|
|
def __init__(self, *, vllm_config: VllmConfig, prefix: str = "") -> None:
|
|
super().__init__()
|
|
config = vllm_config.model_config.hf_config
|
|
quant_config = vllm_config.quant_config
|
|
multimodal_config = vllm_config.model_config.multimodal_config
|
|
|
|
self.config = config
|
|
self.multimodal_config = multimodal_config
|
|
|
|
# Initialize the vision tower only up to the required feature layer
|
|
self.vision_tower = init_vision_tower_for_llava(
|
|
config,
|
|
quant_config,
|
|
require_post_norm=False,
|
|
prefix=maybe_prefix(prefix, "vision_tower"),
|
|
)
|
|
self.multi_modal_projector = LlavaOnevisionMultiModalProjector(config)
|
|
self.language_model = init_vllm_registered_model(
|
|
vllm_config=vllm_config,
|
|
hf_config=config.text_config,
|
|
prefix=maybe_prefix(prefix, "language_model"),
|
|
)
|
|
self.image_newline = nn.Parameter(torch.empty(config.text_config.hidden_size))
|
|
|
|
self.make_empty_intermediate_tensors = (
|
|
self.language_model.model.make_empty_intermediate_tensors
|
|
)
|
|
|
|
def _parse_and_validate_image_input(
|
|
self, **kwargs: object
|
|
) -> LlavaOnevisionImageInputs | None:
|
|
pixel_values = kwargs.pop("pixel_values", None)
|
|
image_sizes = kwargs.pop("image_sizes", None)
|
|
image_embeds = kwargs.pop("image_embeds", None)
|
|
|
|
if pixel_values is None and image_embeds is None:
|
|
return None
|
|
|
|
if pixel_values is not None:
|
|
return LlavaOnevisionImagePixelInputs(
|
|
type="pixel_values",
|
|
pixel_values=pixel_values,
|
|
image_sizes=image_sizes,
|
|
resolve_bindings={
|
|
"h": self.config.vision_config.image_size,
|
|
"w": self.config.vision_config.image_size,
|
|
},
|
|
)
|
|
|
|
if image_embeds is not None:
|
|
return LlavaOnevisionImageEmbeddingInputs(
|
|
type="image_embeds",
|
|
data=image_embeds,
|
|
)
|
|
|
|
raise AssertionError("This line should be unreachable.")
|
|
|
|
def _parse_and_validate_video_input(
|
|
self, **kwargs: object
|
|
) -> LlavaOnevisionVideoPixelInputs | None:
|
|
"""
|
|
A legal video input should have the following dimensions:
|
|
{
|
|
"pixel_values_videos" :
|
|
list[b, Tensor(nb_frames, nb_channels, height, width)]
|
|
}
|
|
"""
|
|
pixel_values_videos = kwargs.pop("pixel_values_videos", None)
|
|
if pixel_values_videos is None:
|
|
return None
|
|
|
|
return LlavaOnevisionVideoPixelInputs(
|
|
type="pixel_values_videos",
|
|
pixel_values_videos=pixel_values_videos,
|
|
resolve_bindings={
|
|
"h": self.config.vision_config.image_size,
|
|
"w": self.config.vision_config.image_size,
|
|
},
|
|
)
|
|
|
|
def _parse_and_validate_multimodal_inputs(self, **kwargs: object) -> dict:
|
|
mm_input_by_modality = {}
|
|
|
|
# Preserve the order of modalities if there are multiple of them
|
|
# from the order of kwargs.
|
|
for input_key in kwargs:
|
|
if (
|
|
input_key in ("pixel_values", "image_embeds")
|
|
and "image" not in mm_input_by_modality
|
|
):
|
|
mm_input_by_modality["image"] = self._parse_and_validate_image_input(
|
|
**kwargs
|
|
)
|
|
if (
|
|
input_key in ("pixel_values_videos", "video_embeds")
|
|
and "video" not in mm_input_by_modality
|
|
):
|
|
mm_input_by_modality["video"] = self._parse_and_validate_video_input(
|
|
**kwargs
|
|
)
|
|
|
|
return mm_input_by_modality
|
|
|
|
def _image_pixels_to_features(
|
|
self,
|
|
vision_tower: CLIPVisionModel | SiglipVisionModel,
|
|
pixel_values: torch.Tensor,
|
|
) -> torch.Tensor:
|
|
# NOTE: we skip the step to select the vision feature layer since
|
|
# this is already done inside the vision tower
|
|
return vision_tower(
|
|
pixel_values,
|
|
feature_select_strategy=self.config.vision_feature_select_strategy,
|
|
)
|
|
|
|
# Based on: https://github.com/haotian-liu/LLaVA/blob/main/llava/model/llava_arch.py
|
|
def _merge_image_patch_embeddings(
|
|
self,
|
|
image_size: torch.Tensor,
|
|
patch_embeddings: torch.Tensor,
|
|
*,
|
|
image_newline=None,
|
|
vision_aspect_ratio="anyres_max_9",
|
|
strategy: str,
|
|
) -> torch.Tensor:
|
|
if strategy == "flat":
|
|
return patch_embeddings.flatten(0, 1)
|
|
|
|
if strategy.startswith("spatial"):
|
|
height = width = (
|
|
self.config.vision_config.image_size
|
|
// self.config.vision_config.patch_size
|
|
)
|
|
|
|
base_patch_embeds = patch_embeddings[0]
|
|
if height * width != base_patch_embeds.shape[0]:
|
|
raise ValueError(
|
|
"The number of patches is not consistent with the image size."
|
|
)
|
|
|
|
if patch_embeddings.shape[0] > 1:
|
|
other_patch_embeds = patch_embeddings[1:]
|
|
|
|
# Move to CPU to avoid floating-point errors
|
|
orig_height, orig_width = image_size.tolist()
|
|
|
|
# image_aspect_ratio == "anyres"
|
|
num_patch_height, num_patch_width = get_anyres_image_grid_shape(
|
|
(orig_height, orig_width),
|
|
self.config.image_grid_pinpoints,
|
|
self.config.vision_config.image_size,
|
|
)
|
|
num_patches = num_patch_height * num_patch_width
|
|
|
|
# Image patches might be padded for batch processing
|
|
other_patch_embeds = other_patch_embeds[:num_patches].view(
|
|
num_patch_height, num_patch_width, height, width, -1
|
|
)
|
|
|
|
if "unpad" in strategy:
|
|
other_patch_embeds = (
|
|
other_patch_embeds.permute(4, 0, 2, 1, 3)
|
|
.contiguous()
|
|
.flatten(1, 2)
|
|
.flatten(2, 3)
|
|
)
|
|
other_patch_embeds = unpad_image(
|
|
other_patch_embeds, (orig_height, orig_width)
|
|
)
|
|
max_num_patches = int(
|
|
vision_aspect_ratio.removeprefix("anyres_max_")
|
|
)
|
|
channels, curr_height, curr_width = other_patch_embeds.shape
|
|
ratio = math.sqrt(
|
|
curr_height * curr_width / (max_num_patches * height**2)
|
|
)
|
|
if ratio > 1.1:
|
|
other_patch_embeds = other_patch_embeds[None]
|
|
other_patch_embeds = nn.functional.interpolate(
|
|
other_patch_embeds,
|
|
[int(curr_height // ratio), int(curr_width // ratio)],
|
|
mode="bilinear",
|
|
)[0]
|
|
if image_newline is not None:
|
|
other_patch_embeds = torch.cat(
|
|
(
|
|
other_patch_embeds,
|
|
image_newline[:, None, None]
|
|
.expand(*other_patch_embeds.shape[:-1], 1)
|
|
.to(other_patch_embeds.device),
|
|
),
|
|
dim=-1,
|
|
)
|
|
other_patch_embeds = other_patch_embeds.flatten(1, 2).transpose(
|
|
0, 1
|
|
)
|
|
else:
|
|
other_patch_embeds = (
|
|
other_patch_embeds.permute(0, 2, 1, 3, 4)
|
|
.contiguous()
|
|
.flatten(0, 3)
|
|
)
|
|
|
|
merged_patch_embeddings = torch.cat(
|
|
(base_patch_embeds, other_patch_embeds), dim=0
|
|
)
|
|
else:
|
|
if "unpad" in strategy:
|
|
merged_patch_embeddings = torch.cat(
|
|
(
|
|
base_patch_embeds,
|
|
self.image_newline[None].to(base_patch_embeds.device),
|
|
),
|
|
dim=0,
|
|
)
|
|
else:
|
|
merged_patch_embeddings = base_patch_embeds
|
|
|
|
return merged_patch_embeddings
|
|
|
|
raise ValueError(f"Unexpected patch merge strategy: {strategy}")
|
|
|
|
def _process_image_pixels(
|
|
self,
|
|
inputs: LlavaOnevisionImagePixelInputs,
|
|
) -> torch.Tensor | list[torch.Tensor]:
|
|
assert self.vision_tower is not None
|
|
|
|
pixel_values = inputs["pixel_values"]
|
|
|
|
if isinstance(pixel_values, torch.Tensor):
|
|
b, num_patches, c, h, w = pixel_values.shape
|
|
stacked_pixel_values = pixel_values.view(b * num_patches, c, h, w)
|
|
stacked_image_features = self._image_pixels_to_features(
|
|
self.vision_tower, stacked_pixel_values
|
|
)
|
|
stacked_patch_embeddings = self.multi_modal_projector(
|
|
stacked_image_features
|
|
)
|
|
|
|
return stacked_patch_embeddings.view(
|
|
b, num_patches, *stacked_patch_embeddings.shape[1:]
|
|
)
|
|
|
|
num_patches_per_batch = [v.shape[0] for v in pixel_values]
|
|
stacked_pixel_values = torch.cat(pixel_values)
|
|
stacked_image_features = self._image_pixels_to_features(
|
|
self.vision_tower, stacked_pixel_values
|
|
)
|
|
|
|
return [
|
|
self.multi_modal_projector(image_features)
|
|
for image_features in torch.split(
|
|
stacked_image_features, num_patches_per_batch
|
|
)
|
|
]
|
|
|
|
def _process_image_input(
|
|
self,
|
|
image_input: LlavaOnevisionImageInputs,
|
|
) -> torch.Tensor | list[torch.Tensor]:
|
|
if image_input["type"] == "image_embeds":
|
|
return [image_input["data"]]
|
|
|
|
patch_embeddings = self._process_image_pixels(image_input)
|
|
|
|
image_sizes = image_input.get("image_sizes")
|
|
if image_sizes is None:
|
|
batch_size = len(image_input["pixel_values"])
|
|
vision_config = self.config.vision_config
|
|
default_height = default_width = vision_config.image_size
|
|
image_sizes = torch.as_tensor(
|
|
[[default_height, default_width] for _ in range(batch_size)]
|
|
)
|
|
|
|
return [
|
|
self._merge_image_patch_embeddings(
|
|
image_sizes[i],
|
|
patch_features_batch,
|
|
image_newline=self.image_newline,
|
|
strategy="spatial_unpad",
|
|
)
|
|
for i, patch_features_batch in enumerate(patch_embeddings)
|
|
]
|
|
|
|
def _video_pixels_to_features(
|
|
self,
|
|
vision_tower: CLIPVisionModel | SiglipVisionModel,
|
|
pixel_values: torch.Tensor,
|
|
) -> torch.Tensor:
|
|
# NOTE: we skip the step to select the vision feature layer since
|
|
# this is already done inside the vision tower
|
|
video_features = vision_tower(
|
|
pixel_values,
|
|
feature_select_strategy=self.config.vision_feature_select_strategy,
|
|
)
|
|
video_features = self.multi_modal_projector(video_features)
|
|
video_features = self.apply_pooling(video_features)
|
|
return video_features
|
|
|
|
def _process_video_pixels(self, inputs: LlavaOnevisionVideoPixelInputs):
|
|
assert self.vision_tower is not None
|
|
|
|
video_pixels = inputs["pixel_values_videos"]
|
|
|
|
if isinstance(video_pixels, torch.Tensor):
|
|
total_videos, frames, c, h, w = video_pixels.shape
|
|
video_pixels_flat = video_pixels.view(total_videos * frames, c, h, w)
|
|
|
|
embeddings_flat = self._video_pixels_to_features(
|
|
self.vision_tower, video_pixels_flat
|
|
)
|
|
|
|
embeddings_flat = embeddings_flat.reshape(
|
|
total_videos, frames * embeddings_flat.shape[1], -1
|
|
)
|
|
|
|
image_newline = self.image_newline[None, None, :].expand(
|
|
total_videos, -1, -1
|
|
)
|
|
return torch.cat((embeddings_flat, image_newline), dim=1)
|
|
|
|
frames_per_video = [len(video) for video in video_pixels]
|
|
video_pixels_flat = torch.cat(video_pixels)
|
|
|
|
embeddings_flat = self._video_pixels_to_features(
|
|
self.vision_tower, video_pixels_flat
|
|
)
|
|
|
|
image_newline = self.image_newline[None, None, :]
|
|
|
|
return [
|
|
torch.cat(
|
|
(
|
|
embeds.reshape(1, num_frame * embeddings_flat.shape[1], -1),
|
|
image_newline,
|
|
),
|
|
dim=1,
|
|
)
|
|
for num_frame, embeds in zip(
|
|
frames_per_video,
|
|
torch.split(embeddings_flat, frames_per_video),
|
|
)
|
|
]
|
|
|
|
def apply_pooling(self, image_features: torch.Tensor, stride: int = 2):
|
|
vision_config = self.config.vision_config
|
|
height = width = vision_config.image_size // vision_config.patch_size
|
|
batch_frames, _, dim = image_features.shape
|
|
image_features = image_features.view(batch_frames, height, width, -1)
|
|
image_features = image_features.permute(0, 3, 1, 2)
|
|
|
|
# TODO support other pooling types config
|
|
height, width = image_features.shape[2:]
|
|
scaled_shape = [math.ceil(height / stride), math.ceil(width / stride)]
|
|
image_feature = nn.functional.interpolate(
|
|
image_features, size=scaled_shape, mode="bilinear"
|
|
)
|
|
image_feature = image_feature.permute(0, 2, 3, 1)
|
|
image_feature = image_feature.view(batch_frames, -1, dim)
|
|
return image_feature
|
|
|
|
def get_language_model(self) -> torch.nn.Module:
|
|
return self.language_model
|
|
|
|
def embed_multimodal(self, **kwargs: object) -> MultiModalEmbeddings:
|
|
mm_input_by_modality = self._parse_and_validate_multimodal_inputs(**kwargs)
|
|
if not mm_input_by_modality:
|
|
return []
|
|
return None
|
|
|
|
# The result multimodal_embeddings is tuple of tensors, with each
|
|
# tensor corresponding to a multimodal data item (image or video).
|
|
multimodal_embeddings: tuple[torch.Tensor, ...] = ()
|
|
|
|
# NOTE: It is important to iterate over the keys in this dictionary
|
|
# to preserve the order of the modalities.
|
|
for modality in mm_input_by_modality:
|
|
multimodal_input = mm_input_by_modality[modality]
|
|
if modality == "image":
|
|
image_embeddings = self._process_image_input(multimodal_input)
|
|
multimodal_embeddings += tuple(image_embeddings)
|
|
if modality == "video":
|
|
video_embeddings = self._process_video_pixels(multimodal_input)
|
|
multimodal_embeddings += tuple(video_embeddings)
|
|
|
|
return multimodal_embeddings
|
|
|
|
def forward(
|
|
self,
|
|
input_ids: torch.Tensor,
|
|
positions: torch.Tensor,
|
|
intermediate_tensors: IntermediateTensors | None = None,
|
|
inputs_embeds: torch.Tensor | None = None,
|
|
**kwargs: object,
|
|
) -> torch.Tensor | IntermediateTensors:
|
|
"""Run forward pass for LlaVA-Onevision.
|
|
Args:
|
|
input_ids: Flattened (concatenated) input_ids corresponding to a
|
|
batch.
|
|
pixel_values_videos: Pixels in each frames for each input videos.
|
|
"""
|
|
if intermediate_tensors is not None:
|
|
inputs_embeds = None
|
|
|
|
hidden_states = self.language_model.model(
|
|
input_ids, positions, intermediate_tensors, inputs_embeds=inputs_embeds
|
|
)
|
|
|
|
return hidden_states
|
|
|
|
def compute_logits(
|
|
self,
|
|
hidden_states: torch.Tensor,
|
|
) -> torch.Tensor | None:
|
|
return self.language_model.compute_logits(hidden_states)
|
|
|
|
def load_weights(self, weights: Iterable[tuple[str, torch.Tensor]]) -> set[str]:
|
|
loader = AutoWeightsLoader(self)
|
|
return loader.load_weights(weights, mapper=self.hf_to_vllm_mapper)
|