vllm/vllm/entrypoints/cli/openai.py

173 lines
5.4 KiB
Python

# SPDX-License-Identifier: Apache-2.0
# Commands that act as an interactive OpenAI API client
import argparse
import os
import signal
import sys
from typing import List, Optional, Tuple
from openai import OpenAI
from openai.types.chat import ChatCompletionMessageParam
from vllm.entrypoints.cli.types import CLISubcommand
from vllm.utils import FlexibleArgumentParser
def _register_signal_handlers():
def signal_handler(sig, frame):
sys.exit(0)
signal.signal(signal.SIGINT, signal_handler)
signal.signal(signal.SIGTSTP, signal_handler)
def _interactive_cli(args: argparse.Namespace) -> Tuple[str, OpenAI]:
_register_signal_handlers()
base_url = args.url
api_key = args.api_key or os.environ.get("OPENAI_API_KEY", "EMPTY")
openai_client = OpenAI(api_key=api_key, base_url=base_url)
if args.model_name:
model_name = args.model_name
else:
available_models = openai_client.models.list()
model_name = available_models.data[0].id
print(f"Using model: {model_name}")
return model_name, openai_client
def chat(system_prompt: Optional[str], model_name: str,
client: OpenAI) -> None:
conversation: List[ChatCompletionMessageParam] = []
if system_prompt is not None:
conversation.append({"role": "system", "content": system_prompt})
print("Please enter a message for the chat model:")
while True:
try:
input_message = input("> ")
except EOFError:
return
conversation.append({"role": "user", "content": input_message})
chat_completion = client.chat.completions.create(model=model_name,
messages=conversation)
response_message = chat_completion.choices[0].message
output = response_message.content
conversation.append(response_message) # type: ignore
print(output)
def _add_query_options(
parser: FlexibleArgumentParser) -> FlexibleArgumentParser:
parser.add_argument(
"--url",
type=str,
default="http://localhost:8000/v1",
help="url of the running OpenAI-Compatible RESTful API server")
parser.add_argument(
"--model-name",
type=str,
default=None,
help=("The model name used in prompt completion, default to "
"the first model in list models API call."))
parser.add_argument(
"--api-key",
type=str,
default=None,
help=(
"API key for OpenAI services. If provided, this api key "
"will overwrite the api key obtained through environment variables."
))
return parser
class ChatCommand(CLISubcommand):
"""The `chat` subcommand for the vLLM CLI. """
def __init__(self):
self.name = "chat"
super().__init__()
@staticmethod
def cmd(args: argparse.Namespace) -> None:
model_name, client = _interactive_cli(args)
system_prompt = args.system_prompt
conversation: List[ChatCompletionMessageParam] = []
if system_prompt is not None:
conversation.append({"role": "system", "content": system_prompt})
print("Please enter a message for the chat model:")
while True:
try:
input_message = input("> ")
except EOFError:
return
conversation.append({"role": "user", "content": input_message})
chat_completion = client.chat.completions.create(
model=model_name, messages=conversation)
response_message = chat_completion.choices[0].message
output = response_message.content
conversation.append(response_message) # type: ignore
print(output)
def subparser_init(
self,
subparsers: argparse._SubParsersAction) -> FlexibleArgumentParser:
chat_parser = subparsers.add_parser(
"chat",
help="Generate chat completions via the running API server",
usage="vllm chat [options]")
_add_query_options(chat_parser)
chat_parser.add_argument(
"--system-prompt",
type=str,
default=None,
help=("The system prompt to be added to the chat template, "
"used for models that support system prompts."))
return chat_parser
class CompleteCommand(CLISubcommand):
"""The `complete` subcommand for the vLLM CLI. """
def __init__(self):
self.name = "complete"
super().__init__()
@staticmethod
def cmd(args: argparse.Namespace) -> None:
model_name, client = _interactive_cli(args)
print("Please enter prompt to complete:")
while True:
input_prompt = input("> ")
completion = client.completions.create(model=model_name,
prompt=input_prompt)
output = completion.choices[0].text
print(output)
def subparser_init(
self,
subparsers: argparse._SubParsersAction) -> FlexibleArgumentParser:
complete_parser = subparsers.add_parser(
"complete",
help=("Generate text completions based on the given prompt "
"via the running API server"),
usage="vllm complete [options]")
_add_query_options(complete_parser)
return complete_parser
def cmd_init() -> List[CLISubcommand]:
return [ChatCommand(), CompleteCommand()]