Robert Shaw d4d93db2c5
[V1] V1 Enablement Oracle (#13726)
Signed-off-by: rshaw@neuralmagic.com <rshaw@neuralmagic.com>
Co-authored-by: rshaw@neuralmagic.com <rshaw@neuralmagic.com>
Co-authored-by: Nicolò Lucchesi <nlucches@redhat.com>
Co-authored-by: Tyler Michael Smith <tyler@neuralmagic.com>
Co-authored-by: Michael Goin <michael@neuralmagic.com>
2025-03-14 22:02:20 -07:00

24 lines
1.0 KiB
Python

# SPDX-License-Identifier: Apache-2.0
"""Inference-only HF format GLM-4 model compatible with THUDM weights."""
from vllm.config import VllmConfig
from vllm.model_executor.models.llama import LlamaForCausalLM
from .interfaces import SupportsV0Only
from .utils import PPMissingLayer
class GlmForCausalLM(LlamaForCausalLM, SupportsV0Only):
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
super().__init__(vllm_config=vllm_config, prefix=prefix)
# Hack Llama model to fit HF format GLM implementation
# Attention difference between GLM and Llama:
# 1. Half partial rotary_dim and no Neox style.
# 2. There is no bias for o_proj in attention
for layer in self.model.layers:
if not isinstance(layer, PPMissingLayer):
layer.self_attn.rotary_emb.rotary_dim //= 2
layer.self_attn.rotary_emb.is_neox_style = False
layer.self_attn.o_proj.bias = None
layer.self_attn.o_proj.skip_bias_add = True