mirror of
https://git.datalinker.icu/vllm-project/vllm.git
synced 2025-12-11 06:04:57 +08:00
Signed-off-by: Robert Shaw <robshaw@redhat.com> Signed-off-by: Nick Hill <nhill@redhat.com> Signed-off-by: Tyler Michael Smith <tyler@neuralmagic.com> Co-authored-by: Robert Shaw <robshaw@redhat.com> Co-authored-by: Nick Hill <nhill@redhat.com> Co-authored-by: Tyler Michael Smith <tyler@neuralmagic.com>
792 lines
31 KiB
Python
792 lines
31 KiB
Python
# SPDX-License-Identifier: Apache-2.0
|
|
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
|
|
|
import contextlib
|
|
import os
|
|
import weakref
|
|
from collections.abc import Iterator
|
|
from dataclasses import dataclass
|
|
from enum import Enum, auto
|
|
from multiprocessing import Process, connection
|
|
from multiprocessing.process import BaseProcess
|
|
from typing import TYPE_CHECKING, Callable, Optional, Union
|
|
|
|
import msgspec
|
|
import zmq
|
|
|
|
from vllm.config import CacheConfig, ParallelConfig, VllmConfig
|
|
from vllm.logger import init_logger
|
|
from vllm.ray.ray_env import get_env_vars_to_copy
|
|
from vllm.utils import get_mp_context, get_open_zmq_ipc_path, zmq_socket_ctx
|
|
from vllm.v1.engine.coordinator import DPCoordinator
|
|
from vllm.v1.executor.abstract import Executor
|
|
from vllm.v1.utils import get_engine_client_zmq_addr, shutdown
|
|
|
|
if TYPE_CHECKING:
|
|
from ray.util.placement_group import PlacementGroup
|
|
|
|
logger = init_logger(__name__)
|
|
|
|
STARTUP_POLL_PERIOD_MS = 10000
|
|
|
|
|
|
class CoreEngineState(Enum):
|
|
NEW = auto()
|
|
CONNECTED = auto()
|
|
READY = auto()
|
|
|
|
|
|
class CoreEngine:
|
|
"""One per data parallel rank, used to track state during handshaking."""
|
|
|
|
def __init__(self, index: int = 0, local: bool = True):
|
|
self.local = local
|
|
self.identity = index.to_bytes(2, "little")
|
|
|
|
self.state = CoreEngineState.NEW
|
|
|
|
|
|
@dataclass
|
|
class EngineZmqAddresses:
|
|
# ZMQ input socket addresses for each front-end client (requests)
|
|
inputs: list[str]
|
|
# ZMQ output socket addresses for each front-end client (responses)
|
|
outputs: list[str]
|
|
# ZMQ input socket address of DP coordinator if applicable
|
|
coordinator_input: Optional[str] = None
|
|
# ZMQ output socket address of DP coordinator if applicable
|
|
coordinator_output: Optional[str] = None
|
|
# ZMQ socket for front-end to connect to DP coordinator.
|
|
# Not used by engine, just relayed to front-end in handshake response.
|
|
# Only required for external DP LB case.
|
|
frontend_stats_publish_address: Optional[str] = None
|
|
|
|
|
|
@dataclass
|
|
class EngineHandshakeMetadata:
|
|
"""Metadata sent to each engine process during startup handshake,
|
|
including addresses of the front-end ZMQ queues that they should
|
|
connect to.
|
|
"""
|
|
addresses: EngineZmqAddresses
|
|
parallel_config: dict[str, Union[int, str]]
|
|
|
|
|
|
class CoreEngineProcManager:
|
|
"""
|
|
Utility class to handle creation, readiness, and shutdown
|
|
of background processes used by the AsyncLLM and LLMEngine.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
target_fn: Callable,
|
|
local_engine_count: int,
|
|
start_index: int,
|
|
local_start_index: int,
|
|
vllm_config: VllmConfig,
|
|
local_client: bool,
|
|
handshake_address: str,
|
|
executor_class: type[Executor],
|
|
log_stats: bool,
|
|
client_handshake_address: Optional[str] = None,
|
|
):
|
|
context = get_mp_context()
|
|
common_kwargs = {
|
|
"vllm_config": vllm_config,
|
|
"local_client": local_client,
|
|
"handshake_address": handshake_address,
|
|
"executor_class": executor_class,
|
|
"log_stats": log_stats,
|
|
}
|
|
|
|
if client_handshake_address:
|
|
common_kwargs[
|
|
"client_handshake_address"] = client_handshake_address
|
|
|
|
self.processes: list[BaseProcess] = []
|
|
for index in range(local_engine_count):
|
|
local_index = local_start_index + index
|
|
global_index = start_index + index
|
|
# Start EngineCore in background process.
|
|
self.processes.append(
|
|
context.Process(target=target_fn,
|
|
name=f"EngineCore_{global_index}",
|
|
kwargs=common_kwargs | {
|
|
"dp_rank": global_index,
|
|
"local_dp_rank": local_index,
|
|
}))
|
|
|
|
self._finalizer = weakref.finalize(self, shutdown, self.processes)
|
|
try:
|
|
for proc in self.processes:
|
|
proc.start()
|
|
finally:
|
|
# Kill other procs if not all are running.
|
|
if self.finished_procs():
|
|
self.close()
|
|
|
|
def close(self):
|
|
"""Shutdown all procs."""
|
|
self._finalizer()
|
|
|
|
def join_first(self):
|
|
"""Wait for any process to exit."""
|
|
connection.wait(proc.sentinel for proc in self.processes)
|
|
|
|
def sentinels(self) -> list:
|
|
return [proc.sentinel for proc in self.processes]
|
|
|
|
def finished_procs(self) -> dict[str, int]:
|
|
"""Returns dict of proc name -> exit code for any finished procs."""
|
|
return {
|
|
proc.name: proc.exitcode
|
|
for proc in self.processes if proc.exitcode is not None
|
|
}
|
|
|
|
|
|
class CoreEngineActorManager:
|
|
"""
|
|
Utility class to handle creation, readiness, and shutdown
|
|
of core engine Ray actors used by the AsyncLLM and LLMEngine.
|
|
|
|
Different from CoreEngineProcManager, this class manages
|
|
core engines for both local and remote nodes.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
vllm_config: VllmConfig,
|
|
addresses: EngineZmqAddresses,
|
|
executor_class: type[Executor],
|
|
log_stats: bool,
|
|
placement_groups: Optional[list["PlacementGroup"]] = None,
|
|
local_dp_ranks: Optional[list[int]] = None,
|
|
):
|
|
import copy
|
|
|
|
import ray
|
|
from ray.runtime_env import RuntimeEnv
|
|
from ray.util.scheduling_strategies import (
|
|
PlacementGroupSchedulingStrategy)
|
|
|
|
from vllm.v1.engine.core import DPEngineCoreActor
|
|
|
|
self.local_engine_actors: list[ray.ActorHandle] = []
|
|
self.remote_engine_actors: list[ray.ActorHandle] = []
|
|
|
|
env_vars_list = get_env_vars_to_copy(destination="DPEngineCoreActor")
|
|
self.env_vars_dict = {
|
|
name: os.environ[name]
|
|
for name in env_vars_list if name in os.environ
|
|
}
|
|
runtime_env = RuntimeEnv(env_vars=self.env_vars_dict)
|
|
|
|
self.addresses = addresses
|
|
self.executor_class = executor_class
|
|
self.log_stats = log_stats
|
|
dp_size = vllm_config.parallel_config.data_parallel_size
|
|
local_engine_count = \
|
|
vllm_config.parallel_config.data_parallel_size_local
|
|
world_size = vllm_config.parallel_config.world_size
|
|
|
|
if ray.is_initialized():
|
|
logger.info(
|
|
"Ray is already initialized. Skipping Ray initialization.")
|
|
else:
|
|
ray.init()
|
|
|
|
if placement_groups is not None:
|
|
assert local_dp_ranks is not None, (
|
|
"local_dp_ranks must be provided if "
|
|
"placement_groups is provided")
|
|
assert len(placement_groups) == len(local_dp_ranks), (
|
|
"placement_groups and local_dp_ranks must "
|
|
"have the same length")
|
|
logger.info("Using provided placement groups")
|
|
# TODO(rui): validate passed-in placement groups
|
|
self.created_placement_groups = []
|
|
else:
|
|
placement_groups, local_dp_ranks = \
|
|
CoreEngineActorManager.create_dp_placement_groups(vllm_config)
|
|
self.created_placement_groups = placement_groups
|
|
assert len(placement_groups) == dp_size, (
|
|
"Number of placement groups must match data parallel size")
|
|
|
|
self.placement_group_is_local = []
|
|
refs = []
|
|
for index in range(dp_size):
|
|
local_index = local_dp_ranks[index]
|
|
dp_vllm_config = copy.deepcopy(vllm_config)
|
|
pg = placement_groups[index]
|
|
dp_vllm_config.parallel_config.placement_group = pg
|
|
local_client = index < local_engine_count
|
|
actor = ray.remote(DPEngineCoreActor).options(
|
|
scheduling_strategy=PlacementGroupSchedulingStrategy(
|
|
placement_group=pg,
|
|
placement_group_bundle_index=world_size,
|
|
),
|
|
runtime_env=runtime_env).remote(vllm_config=dp_vllm_config,
|
|
executor_class=executor_class,
|
|
log_stats=log_stats,
|
|
local_client=local_client,
|
|
addresses=addresses,
|
|
dp_rank=index,
|
|
local_dp_rank=local_index)
|
|
if local_client:
|
|
self.local_engine_actors.append(actor)
|
|
else:
|
|
self.remote_engine_actors.append(actor)
|
|
self.placement_group_is_local.append(local_client)
|
|
refs.append(actor.wait_for_init.remote())
|
|
|
|
ray.get(refs)
|
|
self.run_refs = []
|
|
for actor in self.local_engine_actors + self.remote_engine_actors:
|
|
self.run_refs.append(actor.run.remote())
|
|
|
|
@staticmethod
|
|
def create_dp_placement_groups(
|
|
vllm_config: VllmConfig
|
|
) -> tuple[list["PlacementGroup"], list[int]]:
|
|
"""
|
|
Create placement groups for data parallel.
|
|
"""
|
|
|
|
import ray
|
|
from ray._private.state import available_resources_per_node
|
|
from ray.util.state import list_nodes
|
|
|
|
logger.info("Creating placement groups for data parallel")
|
|
dp_master_ip = \
|
|
vllm_config.parallel_config.data_parallel_master_ip
|
|
num_pg_to_create = vllm_config.parallel_config.data_parallel_size
|
|
local_engine_count = \
|
|
vllm_config.parallel_config.data_parallel_size_local
|
|
|
|
nodes = list_nodes()
|
|
nodes = sorted(list_nodes(),
|
|
key=lambda node: node.node_ip != dp_master_ip)
|
|
assert nodes[0].node_ip == dp_master_ip, (
|
|
"The first node must be the head node")
|
|
assert len(nodes) == 1 or nodes[1].node_ip != dp_master_ip, (
|
|
"There can only be one head node")
|
|
|
|
available_resources = available_resources_per_node()
|
|
world_size = vllm_config.parallel_config.world_size
|
|
placement_groups: list[PlacementGroup] = []
|
|
local_dp_ranks: list[int] = []
|
|
|
|
for node in nodes:
|
|
node_ip = node.node_ip
|
|
node_resources = available_resources[node.node_id]
|
|
# For now, each DP rank can only be assigned to one node
|
|
# TODO(rui): support allocating a single DP rank
|
|
# to multiple nodes
|
|
available_engine_count = int(node_resources["GPU"]) // world_size
|
|
if node_ip == dp_master_ip:
|
|
assert available_engine_count >= local_engine_count, (
|
|
"Not enough resources to allocate DP ranks "
|
|
f"on DP master node {node_ip}")
|
|
for i in range(local_engine_count):
|
|
bundles = [{
|
|
"GPU": 1.0,
|
|
"node:" + dp_master_ip: 0.001
|
|
}] * world_size + [{
|
|
"CPU": 1.0
|
|
}]
|
|
pg = ray.util.placement_group(
|
|
name=f"dp_rank_{len(placement_groups)}",
|
|
strategy="STRICT_PACK",
|
|
bundles=bundles,
|
|
)
|
|
placement_groups.append(pg)
|
|
local_dp_ranks.append(i)
|
|
else:
|
|
for i in range(available_engine_count):
|
|
if len(placement_groups) == num_pg_to_create:
|
|
break
|
|
bundles = [{"GPU": 1.0}] * world_size + [{"CPU": 1.0}]
|
|
pg = ray.util.placement_group(
|
|
name=f"dp_rank_{len(placement_groups)}",
|
|
strategy="STRICT_PACK",
|
|
bundles=bundles,
|
|
)
|
|
placement_groups.append(pg)
|
|
local_dp_ranks.append(i)
|
|
return placement_groups, local_dp_ranks
|
|
|
|
@staticmethod
|
|
def add_dp_placement_groups(
|
|
old_vllm_config: VllmConfig, new_data_parallel_size: int
|
|
) -> tuple[list["PlacementGroup"], list[int]]:
|
|
"""
|
|
Add placement groups for new data parallel size.
|
|
"""
|
|
import ray
|
|
from ray._private.state import (available_resources_per_node,
|
|
total_resources_per_node)
|
|
from ray.util.state import list_nodes
|
|
|
|
old_dp_size = old_vllm_config.parallel_config.data_parallel_size
|
|
num_pg_to_create = new_data_parallel_size - old_dp_size
|
|
|
|
if num_pg_to_create <= 0:
|
|
return [], []
|
|
|
|
dp_master_ip = old_vllm_config.parallel_config.data_parallel_master_ip
|
|
world_size = old_vllm_config.parallel_config.world_size
|
|
|
|
nodes = list_nodes()
|
|
nodes = sorted(nodes, key=lambda node: node.node_ip != dp_master_ip)
|
|
assert nodes[0].node_ip == dp_master_ip, (
|
|
"The first node must be the head node")
|
|
assert len(nodes) == 1 or nodes[1].node_ip != dp_master_ip, (
|
|
"There can only be one head node")
|
|
|
|
available_resources = available_resources_per_node()
|
|
total_resources = total_resources_per_node()
|
|
|
|
placement_groups = []
|
|
local_dp_ranks = []
|
|
num_pg_created = 0
|
|
|
|
for node in nodes:
|
|
if num_pg_created >= num_pg_to_create:
|
|
break
|
|
|
|
node_ip = node.node_ip
|
|
node_id = node.node_id
|
|
available_gpus = int(available_resources[node_id]["GPU"])
|
|
|
|
# Get total GPUs on this node from the node's resources
|
|
# Ray stores node resources with node ID as key
|
|
total_gpus = int(total_resources[node_id]["GPU"])
|
|
|
|
# Calculate used GPUs and used engines on this node
|
|
used_gpus = max(0, total_gpus - available_gpus)
|
|
used_engines_on_node = used_gpus // world_size
|
|
|
|
# Calculate how many new engines this node can accommodate
|
|
available_engine_count = available_gpus // world_size
|
|
|
|
# Create placement groups for new engines on this node
|
|
for i in range(available_engine_count):
|
|
if num_pg_created >= num_pg_to_create:
|
|
break
|
|
|
|
rank = old_dp_size + num_pg_created
|
|
|
|
# Create bundles with node constraint for master node
|
|
if node_ip == dp_master_ip:
|
|
bundles = [{
|
|
"GPU": 1.0,
|
|
"node:" + dp_master_ip: 0.001
|
|
}] * world_size + [{
|
|
"CPU": 1.0
|
|
}]
|
|
else:
|
|
bundles = [{"GPU": 1.0}] * world_size + [{"CPU": 1.0}]
|
|
|
|
pg = ray.util.placement_group(
|
|
name=f"dp_rank_{rank}",
|
|
strategy="STRICT_PACK",
|
|
bundles=bundles,
|
|
)
|
|
placement_groups.append(pg)
|
|
|
|
# Local rank starts from the number of engines already used
|
|
# on this node
|
|
local_rank = used_engines_on_node + i
|
|
local_dp_ranks.append(local_rank)
|
|
num_pg_created += 1
|
|
|
|
return placement_groups, local_dp_ranks
|
|
|
|
def scale_up_elastic_ep(self, cur_vllm_config: VllmConfig,
|
|
new_data_parallel_size: int) -> None:
|
|
import copy
|
|
|
|
import ray
|
|
from ray.runtime_env import RuntimeEnv
|
|
from ray.util.scheduling_strategies import (
|
|
PlacementGroupSchedulingStrategy)
|
|
|
|
from vllm.v1.engine.core import DPEngineCoreActor
|
|
|
|
cur_data_parallel_size = len(self.local_engine_actors) + \
|
|
len(self.remote_engine_actors)
|
|
|
|
assert new_data_parallel_size > cur_data_parallel_size, (
|
|
f"New data parallel size {new_data_parallel_size} must be greater "
|
|
f"than current data parallel size {cur_data_parallel_size} "
|
|
"for scale up")
|
|
|
|
placement_groups, local_dp_ranks = \
|
|
self.add_dp_placement_groups(
|
|
cur_vllm_config, new_data_parallel_size)
|
|
|
|
world_size = cur_vllm_config.parallel_config.world_size
|
|
dp_master_ip = cur_vllm_config.parallel_config.data_parallel_master_ip
|
|
new_local_engines = 0
|
|
|
|
runtime_env = RuntimeEnv(env_vars=self.env_vars_dict
|
|
| {"VLLM_ELASTIC_EP_SCALE_UP_LAUNCH": "1"})
|
|
for i, (pg,
|
|
local_rank) in enumerate(zip(placement_groups,
|
|
local_dp_ranks)):
|
|
rank = cur_data_parallel_size + i
|
|
dp_vllm_config = copy.deepcopy(cur_vllm_config)
|
|
dp_vllm_config.parallel_config.data_parallel_size = \
|
|
new_data_parallel_size
|
|
dp_vllm_config.parallel_config.placement_group = pg
|
|
|
|
# Check if this placement group is on the head node
|
|
local_client = any(
|
|
bundle.get("node:" + dp_master_ip, 0) > 0
|
|
for bundle in pg.bundle_specs)
|
|
|
|
if local_client:
|
|
new_local_engines += 1
|
|
# Update data_parallel_size_local
|
|
dp_vllm_config.parallel_config.data_parallel_size_local = (
|
|
cur_vllm_config.parallel_config.data_parallel_size_local +
|
|
new_local_engines)
|
|
|
|
actor = ray.remote(DPEngineCoreActor).options(
|
|
scheduling_strategy=PlacementGroupSchedulingStrategy(
|
|
placement_group=pg,
|
|
placement_group_bundle_index=world_size,
|
|
),
|
|
runtime_env=runtime_env).remote(
|
|
vllm_config=dp_vllm_config,
|
|
executor_class=self.executor_class,
|
|
log_stats=self.log_stats,
|
|
local_client=local_client,
|
|
addresses=self.addresses,
|
|
dp_rank=rank,
|
|
local_dp_rank=local_rank)
|
|
|
|
if local_client:
|
|
self.local_engine_actors.append(actor)
|
|
else:
|
|
self.remote_engine_actors.append(actor)
|
|
self.created_placement_groups.append(pg)
|
|
self.placement_group_is_local.append(local_client)
|
|
|
|
ray.get([
|
|
actor.wait_for_init.remote()
|
|
for actor in (self.local_engine_actors[-new_local_engines:]
|
|
if new_local_engines > 0 else []) +
|
|
self.remote_engine_actors[-(len(placement_groups) -
|
|
new_local_engines):]
|
|
])
|
|
|
|
actors = (self.local_engine_actors[-new_local_engines:]
|
|
if new_local_engines > 0 else []) + \
|
|
self.remote_engine_actors[-(len(placement_groups) -
|
|
new_local_engines):]
|
|
|
|
for actor in actors:
|
|
self.run_refs.append(actor.run.remote())
|
|
|
|
cur_vllm_config.parallel_config.data_parallel_size = \
|
|
new_data_parallel_size
|
|
# Update old_vllm_config with new data_parallel_size_local if any new
|
|
# local engines were added
|
|
if new_local_engines > 0:
|
|
cur_vllm_config.parallel_config.data_parallel_size_local += \
|
|
new_local_engines
|
|
|
|
def scale_down_elastic_ep(self, cur_data_parallel_size: int,
|
|
new_data_parallel_size: int) -> None:
|
|
import ray
|
|
assert cur_data_parallel_size > new_data_parallel_size, (
|
|
f"cur_data_parallel_size {cur_data_parallel_size} must be greater "
|
|
f"than new_data_parallel_size {new_data_parallel_size} "
|
|
"for scale down")
|
|
for _ in range(cur_data_parallel_size - new_data_parallel_size):
|
|
pg = self.created_placement_groups.pop()
|
|
is_local = self.placement_group_is_local.pop()
|
|
if is_local:
|
|
self.local_engine_actors.pop()
|
|
else:
|
|
self.remote_engine_actors.pop()
|
|
ray.util.remove_placement_group(pg)
|
|
|
|
def get_run_refs(self):
|
|
return self.run_refs
|
|
|
|
def close(self):
|
|
import ray
|
|
for actor in self.local_engine_actors + self.remote_engine_actors:
|
|
ray.kill(actor)
|
|
for pg in self.created_placement_groups:
|
|
ray.util.remove_placement_group(pg)
|
|
|
|
|
|
@contextlib.contextmanager
|
|
def launch_core_engines(
|
|
vllm_config: VllmConfig,
|
|
executor_class: type[Executor],
|
|
log_stats: bool,
|
|
num_api_servers: int = 1,
|
|
) -> Iterator[tuple[
|
|
Optional[Union[CoreEngineProcManager, CoreEngineActorManager]],
|
|
Optional[DPCoordinator],
|
|
EngineZmqAddresses,
|
|
]]:
|
|
"""Launch engine and DP coordinator processes as needed."""
|
|
|
|
parallel_config = vllm_config.parallel_config
|
|
dp_size = parallel_config.data_parallel_size
|
|
local_engine_count = parallel_config.data_parallel_size_local
|
|
local_start_index = parallel_config.data_parallel_rank_local
|
|
dp_rank = parallel_config.data_parallel_rank
|
|
host = parallel_config.data_parallel_master_ip
|
|
local_engines_only = (parallel_config.data_parallel_hybrid_lb
|
|
or parallel_config.data_parallel_external_lb)
|
|
|
|
# In offline mode there is an LLM instance per DP rank and
|
|
# one core engine per LLM, see
|
|
# examples/offline_inference/data_parallel.py.
|
|
offline_mode = local_start_index is not None
|
|
|
|
# client_local_only = True for cases where this front-end
|
|
# sends requests only to colocated engines.
|
|
client_local_only = (offline_mode or local_engines_only
|
|
or (local_engine_count == dp_size))
|
|
|
|
# Set up input and output addresses.
|
|
addresses = EngineZmqAddresses(
|
|
inputs=[
|
|
get_engine_client_zmq_addr(client_local_only, host)
|
|
for _ in range(num_api_servers)
|
|
],
|
|
outputs=[
|
|
get_engine_client_zmq_addr(client_local_only, host)
|
|
for _ in range(num_api_servers)
|
|
],
|
|
)
|
|
|
|
# Run the DP Coordinator process with rank 0 when in
|
|
# online DP mode.
|
|
run_coordinator = dp_size > 1 and not offline_mode and dp_rank == 0
|
|
|
|
if run_coordinator:
|
|
coordinator = DPCoordinator(parallel_config)
|
|
|
|
addresses.coordinator_input, addresses.coordinator_output = (
|
|
coordinator.get_engine_socket_addresses())
|
|
addresses.frontend_stats_publish_address = (
|
|
coordinator.get_stats_publish_address())
|
|
|
|
logger.info("Started DP Coordinator process (PID: %d)",
|
|
coordinator.proc.pid)
|
|
else:
|
|
coordinator = None
|
|
|
|
if parallel_config.data_parallel_backend == "ray":
|
|
logger.info("Starting ray-based data parallel backend")
|
|
|
|
engine_actor_manager = CoreEngineActorManager(
|
|
vllm_config=vllm_config,
|
|
addresses=addresses,
|
|
executor_class=executor_class,
|
|
log_stats=log_stats,
|
|
)
|
|
|
|
yield engine_actor_manager, coordinator, addresses
|
|
return
|
|
|
|
if offline_mode:
|
|
assert local_engine_count == 1
|
|
engines_to_handshake = [CoreEngine(index=dp_rank, local=True)]
|
|
elif dp_rank == 0:
|
|
# Rank 0 holds Coordinator, so it handshakes with all Cores
|
|
# in both external dplb and internal dplb mode.
|
|
# Note this also covers the case where we have zero local engines
|
|
# and rank 0 is headless.
|
|
engines_to_handshake = [
|
|
CoreEngine(index=i, local=(i < local_engine_count))
|
|
for i in range(dp_size)
|
|
]
|
|
else:
|
|
# Rank > 0 handshakes with just the local cores it is managing.
|
|
assert local_engines_only, (
|
|
"Attempting to launch core_engines from dp_rank > 0, but "
|
|
"found internal DPLB, which is incompatible.")
|
|
engines_to_handshake = [
|
|
CoreEngine(index=i, local=True)
|
|
for i in range(dp_rank, dp_rank + local_engine_count)
|
|
]
|
|
|
|
# Whether the started engines will handshake only with co-located
|
|
# front-end processes. In external_dp_lb mode, ranks > 0 handshake with
|
|
# their co-located frontend and also the rank 0 front-end, and hence this
|
|
# will be False.
|
|
handshake_local_only = offline_mode or local_engine_count == dp_size
|
|
|
|
handshake_address = get_engine_client_zmq_addr(
|
|
handshake_local_only, host, parallel_config.data_parallel_rpc_port)
|
|
|
|
if local_engines_only and dp_rank > 0:
|
|
assert not handshake_local_only
|
|
local_handshake_address = get_open_zmq_ipc_path()
|
|
client_handshake_address = local_handshake_address
|
|
else:
|
|
local_handshake_address = handshake_address
|
|
client_handshake_address = None
|
|
|
|
with zmq_socket_ctx(local_handshake_address, zmq.ROUTER,
|
|
bind=True) as handshake_socket:
|
|
|
|
from vllm.v1.engine.core import EngineCoreProc
|
|
|
|
# Start local engines.
|
|
if local_engine_count:
|
|
local_engine_manager = CoreEngineProcManager(
|
|
EngineCoreProc.run_engine_core,
|
|
vllm_config=vllm_config,
|
|
executor_class=executor_class,
|
|
log_stats=log_stats,
|
|
handshake_address=handshake_address,
|
|
client_handshake_address=client_handshake_address,
|
|
local_client=True,
|
|
local_engine_count=local_engine_count,
|
|
start_index=dp_rank,
|
|
local_start_index=local_start_index or 0)
|
|
else:
|
|
local_engine_manager = None
|
|
|
|
yield local_engine_manager, coordinator, addresses
|
|
|
|
# Now wait for engines to start.
|
|
wait_for_engine_startup(
|
|
handshake_socket,
|
|
addresses,
|
|
engines_to_handshake,
|
|
parallel_config,
|
|
vllm_config.cache_config,
|
|
local_engine_manager,
|
|
coordinator.proc if coordinator else None,
|
|
)
|
|
|
|
|
|
def wait_for_engine_startup(
|
|
handshake_socket: zmq.Socket,
|
|
addresses: EngineZmqAddresses,
|
|
core_engines: list[CoreEngine],
|
|
parallel_config: ParallelConfig,
|
|
cache_config: CacheConfig,
|
|
proc_manager: Optional[CoreEngineProcManager],
|
|
coord_process: Optional[Process],
|
|
):
|
|
# Wait for engine core process(es) to send ready messages.
|
|
local_count = parallel_config.data_parallel_size_local
|
|
remote_count = len(core_engines) - local_count
|
|
# [local, remote] counts
|
|
conn_pending, start_pending = [local_count, remote_count], [0, 0]
|
|
poller = zmq.Poller()
|
|
poller.register(handshake_socket, zmq.POLLIN)
|
|
|
|
remote_should_be_headless = not parallel_config.data_parallel_hybrid_lb \
|
|
and not parallel_config.data_parallel_external_lb
|
|
|
|
if proc_manager is not None:
|
|
for sentinel in proc_manager.sentinels():
|
|
poller.register(sentinel, zmq.POLLIN)
|
|
if coord_process is not None:
|
|
poller.register(coord_process.sentinel, zmq.POLLIN)
|
|
while any(conn_pending) or any(start_pending):
|
|
events = poller.poll(STARTUP_POLL_PERIOD_MS)
|
|
if not events:
|
|
if any(conn_pending):
|
|
logger.debug(
|
|
"Waiting for %d local, %d remote core engine proc(s) "
|
|
"to connect.", *conn_pending)
|
|
if any(start_pending):
|
|
logger.debug(
|
|
"Waiting for %d local, %d remote core engine proc(s) "
|
|
"to start.", *start_pending)
|
|
continue
|
|
if len(events) > 1 or events[0][0] != handshake_socket:
|
|
# One of the local core processes exited.
|
|
finished = proc_manager.finished_procs() if proc_manager else {}
|
|
if coord_process is not None and coord_process.exitcode is not None:
|
|
finished[coord_process.name] = coord_process.exitcode
|
|
raise RuntimeError("Engine core initialization failed. "
|
|
"See root cause above. "
|
|
f"Failed core proc(s): {finished}")
|
|
|
|
# Receive HELLO and READY messages from the input socket.
|
|
eng_identity, ready_msg_bytes = handshake_socket.recv_multipart()
|
|
eng_index = int.from_bytes(eng_identity, "little")
|
|
engine = next((e for e in core_engines if e.identity == eng_identity),
|
|
None)
|
|
if engine is None:
|
|
raise RuntimeError(f"Message from engine with unexpected data "
|
|
f"parallel rank: {eng_index}")
|
|
msg = msgspec.msgpack.decode(ready_msg_bytes)
|
|
status, local, headless = msg["status"], msg["local"], msg["headless"]
|
|
if local != engine.local:
|
|
raise RuntimeError(f"{status} message from "
|
|
f"{'local' if local else 'remote'} "
|
|
f"engine {eng_index}, expected it to be "
|
|
f"{'local' if engine.local else 'remote'}")
|
|
|
|
# Remote engines must be headless iff we aren't in hybrid dp lb mode.
|
|
if not local and headless != remote_should_be_headless:
|
|
if headless:
|
|
raise RuntimeError(f"Remote engine {eng_index} must not use "
|
|
f"--headless in external or hybrid dp lb "
|
|
f"mode")
|
|
else:
|
|
raise RuntimeError(f"Remote engine {eng_index} must use "
|
|
f"--headless unless in external or hybrid "
|
|
f"dp lb mode")
|
|
|
|
if status == "HELLO" and engine.state == CoreEngineState.NEW:
|
|
|
|
# Send init message with DP config info.
|
|
init_message = msgspec.msgpack.encode(
|
|
EngineHandshakeMetadata(
|
|
addresses=addresses,
|
|
parallel_config={
|
|
"data_parallel_master_ip":
|
|
parallel_config.data_parallel_master_ip,
|
|
"data_parallel_master_port":
|
|
parallel_config.data_parallel_master_port,
|
|
"data_parallel_size":
|
|
parallel_config.data_parallel_size,
|
|
}))
|
|
handshake_socket.send_multipart((eng_identity, init_message),
|
|
copy=False)
|
|
conn_pending[0 if local else 1] -= 1
|
|
start_pending[0 if local else 1] += 1
|
|
engine.state = CoreEngineState.CONNECTED
|
|
elif status == "READY" and engine.state == CoreEngineState.CONNECTED:
|
|
# Setup KV cache config with initialization state from
|
|
# engine core process. Sum values from all engines in DP case.
|
|
num_gpu_blocks = cache_config.num_gpu_blocks or 0
|
|
num_gpu_blocks += msg["num_gpu_blocks"]
|
|
cache_config.num_gpu_blocks = num_gpu_blocks
|
|
|
|
# In external DP LB mode, the coordinator address that the
|
|
# front-end procs connect to is obtained from rank 0 via
|
|
# one of the engine handshakes, and passed to the local
|
|
# front-end process in the response from the other.
|
|
if addresses.frontend_stats_publish_address is None:
|
|
addresses.frontend_stats_publish_address = msg.get(
|
|
"dp_stats_address")
|
|
|
|
start_pending[0 if local else 1] -= 1
|
|
engine.state = CoreEngineState.READY
|
|
else:
|
|
raise RuntimeError(f"Unexpected {status} message for "
|
|
f"{'local' if local else 'remote'} engine "
|
|
f"{eng_index} in {engine.state} state.")
|
|
|
|
logger.debug("%s from %s core engine process %s.", status,
|
|
"local" if local else "remote", eng_index)
|