vllm/vllm/v1/attention/backends/tree_attn.py
Woosuk Kwon d6d13bd49e
[Misc] Add max_seq_len to CommonAttentionMetadata (#23216)
Signed-off-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
2025-08-20 09:05:29 -07:00

448 lines
16 KiB
Python

# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
"""Attention layer with TreeAttention."""
import ast
from dataclasses import dataclass
from typing import TYPE_CHECKING, Optional
import torch
from vllm.attention.backends.abstract import (AttentionBackend, AttentionImpl,
AttentionMetadata, AttentionType)
from vllm.attention.ops.triton_unified_attention import unified_attention
from vllm.config import VllmConfig
from vllm.logger import init_logger
from vllm.v1.attention.backends.utils import (
AttentionMetadataBuilder, CommonAttentionMetadata,
reorder_batch_to_split_decodes_and_prefills, split_decodes_and_prefills)
from vllm.v1.kv_cache_interface import AttentionSpec
if TYPE_CHECKING:
from vllm.v1.core.sched.output import SchedulerOutput
from vllm.v1.worker.gpu_input_batch import InputBatch
from vllm import _custom_ops as ops
logger = init_logger(__name__)
class TreeAttentionBackend(AttentionBackend):
accept_output_buffer: bool = True
@classmethod
def get_supported_dtypes(cls) -> list[torch.dtype]:
return [torch.float16, torch.bfloat16]
@classmethod
def get_supported_head_sizes(cls) -> list[int]:
return [32, 64, 96, 128, 160, 192, 224, 256]
@classmethod
def validate_head_size(cls, head_size: int) -> None:
supported_head_sizes = cls.get_supported_head_sizes()
if head_size not in supported_head_sizes:
attn_type = cls.__name__.removesuffix("Backend")
raise ValueError(
f"Head size {head_size} is not supported by {attn_type}. "
f"Supported head sizes are: {supported_head_sizes}. "
"Set VLLM_ATTENTION_BACKEND=FLEX_ATTENTION to use "
"FlexAttention backend which supports all head sizes.")
@staticmethod
def get_name() -> str:
return "TREE_ATTN_VLLM_V1"
@staticmethod
def get_impl_cls() -> type["TreeAttentionImpl"]:
return TreeAttentionImpl
@staticmethod
def get_metadata_cls() -> type["AttentionMetadata"]:
return TreeAttentionMetadata
@staticmethod
def get_kv_cache_shape(
num_blocks: int,
block_size: int,
num_kv_heads: int,
head_size: int,
) -> tuple[int, ...]:
if block_size % 16 != 0:
raise ValueError("Block size must be a multiple of 16.")
return (2, num_blocks, block_size, num_kv_heads, head_size)
@staticmethod
def get_builder_cls() -> type["TreeAttentionMetadataBuilder"]:
return TreeAttentionMetadataBuilder
@staticmethod
def use_cascade_attention(*args, **kwargs) -> bool:
return False
@dataclass
class TreeAttentionMetadata:
num_actual_tokens: int # Number of tokens excluding padding.
max_query_len: int
query_start_loc: torch.Tensor
max_seq_len: int
seq_lens: torch.Tensor
block_table: torch.Tensor
slot_mapping: torch.Tensor
num_prefill_tokens: int = 0
num_decode_tokens: int = 0
num_prefills: int = 0
num_decodes: int = 0
tree_attn_bias: Optional[torch.Tensor] = None
# Cached Prefill/decode metadata.
_cached_prefill_metadata: Optional["TreeAttentionMetadata"] = None
_cached_decode_metadata: Optional["TreeAttentionMetadata"] = None
@property
def prefill_metadata(self) -> Optional["TreeAttentionMetadata"]:
if self.num_prefills == 0:
return None
if self._cached_prefill_metadata is not None:
# Recover cached prefill-phase attention
# metadata structure
return self._cached_prefill_metadata
q_start_loc = self.query_start_loc[self.num_decodes:]
q_seqlens = torch.diff(q_start_loc)
kv_seqlens = self.seq_lens[self.num_decodes:]
# Construct & cache prefill-phase attention metadata structure
self._cached_prefill_metadata = TreeAttentionMetadata(
num_actual_tokens=self.num_prefill_tokens,
max_query_len=int(q_seqlens.max().item()),
query_start_loc=q_start_loc - q_start_loc[0],
max_seq_len=int(kv_seqlens.max().item()),
seq_lens=kv_seqlens,
block_table=self.block_table[self.num_decodes:],
slot_mapping=self.slot_mapping[self.num_decode_tokens:],
)
return self._cached_prefill_metadata
@property
def decode_metadata(self) -> Optional["TreeAttentionMetadata"]:
if self.num_decode_tokens == 0:
return None
if self._cached_decode_metadata is not None:
# Recover cached decode-phase attention
# metadata structure
return self._cached_decode_metadata
q_start_loc = self.query_start_loc[:self.num_decodes + 1]
q_seqlens = torch.diff(q_start_loc)
kv_seqlens = self.seq_lens[:self.num_decodes]
# Construct & cache decode-phase attention metadata structure
self._cached_decode_metadata = TreeAttentionMetadata(
num_actual_tokens=self.num_decode_tokens,
max_query_len=int(q_seqlens.max().item()),
query_start_loc=q_start_loc,
max_seq_len=int(kv_seqlens.max().item()),
seq_lens=kv_seqlens,
block_table=self.block_table[:self.num_decodes],
slot_mapping=self.slot_mapping[:self.num_decode_tokens],
tree_attn_bias=self.tree_attn_bias,
)
return self._cached_decode_metadata
class TreeAttentionMetadataBuilder(
AttentionMetadataBuilder[TreeAttentionMetadata]):
def __init__(
self,
kv_cache_spec: AttentionSpec,
layer_names: list[str],
vllm_config: VllmConfig,
device: torch.device,
):
self.kv_cache_spec = kv_cache_spec
self.block_size = kv_cache_spec.block_size
spec_config = vllm_config.speculative_config
spec_token_tree = (spec := spec_config) and spec.speculative_token_tree
tree_choices: list[tuple[int,
...]] = (ast.literal_eval(spec_token_tree)
if spec_token_tree is not None else
[(0, )])
# Construct the tree attention bias.
depth_counts = _get_depth_counts(tree_choices)
self.tree_attn_bias = _prepare_tree_attn_bias(
tree_choices,
depth_counts,
dtype=torch.float32,
device=device,
)
def reorder_batch(self, input_batch: "InputBatch",
scheduler_output: "SchedulerOutput") -> bool:
return reorder_batch_to_split_decodes_and_prefills(
input_batch,
scheduler_output,
decode_threshold=self.tree_attn_bias.shape[0])
def build(
self,
common_prefix_len: int,
common_attn_metadata: CommonAttentionMetadata,
fast_build: bool = False,
) -> TreeAttentionMetadata:
decode_threshold = self.tree_attn_bias.shape[0]
num_decodes, num_prefills, num_decode_tokens, num_prefill_tokens = (
split_decodes_and_prefills(common_attn_metadata,
decode_threshold=decode_threshold))
num_actual_tokens = common_attn_metadata.num_actual_tokens
q_start_loc = common_attn_metadata.query_start_loc
max_query_len = common_attn_metadata.max_query_len
kv_seqlens = common_attn_metadata.seq_lens
max_seq_len = common_attn_metadata.max_seq_len
block_table = common_attn_metadata.block_table_tensor
slot_mapping = common_attn_metadata.slot_mapping
return TreeAttentionMetadata(
num_actual_tokens=num_actual_tokens,
num_prefill_tokens=num_prefill_tokens,
num_decode_tokens=num_decode_tokens,
num_prefills=num_prefills,
num_decodes=num_decodes,
max_query_len=max_query_len,
query_start_loc=q_start_loc,
max_seq_len=max_seq_len,
seq_lens=kv_seqlens,
block_table=block_table,
slot_mapping=slot_mapping,
tree_attn_bias=self.tree_attn_bias,
)
def build_for_drafting(
self,
common_attn_metadata: CommonAttentionMetadata,
draft_index: int,
) -> TreeAttentionMetadata:
# Cache the original tree attention bias.
orig_tree_attn_bias = self.tree_attn_bias
if draft_index == 0:
# Use prefill for drafting at the root level.
self.tree_attn_bias = torch.empty(0)
else:
# Slice the tree attention bias for drafting. Exclude
# the root level.
start, end = 1, 1 + common_attn_metadata.max_query_len
self.tree_attn_bias = self.tree_attn_bias[start:end,
start:end].contiguous()
# Build attention bias.
attn_metadata = self.build(0, common_attn_metadata, fast_build=True)
# Reset the tree attention bias to the original value.
self.tree_attn_bias = orig_tree_attn_bias
return attn_metadata
def _get_depth_counts(sorted_tree_choices: list[tuple[int, ...]]) -> list[int]:
# Count the number of choices at each depth of the tree.
depth_counts = []
prev_depth = 0
for path in sorted_tree_choices:
depth = len(path)
if depth != prev_depth:
depth_counts.append(0)
depth_counts[depth - 1] += 1
prev_depth = depth
return depth_counts
def _prepare_tree_attn_bias(
sorted_tree_choices: list[tuple[int, ...]],
depth_counts: list[int],
dtype: Optional[torch.dtype],
device: Optional[torch.device],
) -> torch.Tensor:
# +1 comes from the additional root node.
tree_len = len(sorted_tree_choices) + 1
tree_attn_mask = torch.full((tree_len, tree_len),
-torch.inf,
device=device,
dtype=dtype)
# Set diagonal to all zeros. Each token should
# attend to itself.
mask_val = 0
for i in range(tree_len):
tree_attn_mask[i, i] = mask_val
# Set root to all zeros. All tokens attend to it.
tree_attn_mask[:, 0] = mask_val
# Set all ancestors to zeros.
start = 0
for i in range(len(depth_counts)):
for j in range(depth_counts[i]):
cur_tree_choice = sorted_tree_choices[start + j]
# Retrieve ancestor position.
if len(cur_tree_choice) == 1:
continue
ancestor_idx = []
for c in range(len(cur_tree_choice) - 1):
ancestor_idx.append(
sorted_tree_choices.index(cur_tree_choice[:c + 1]) + 1)
tree_attn_mask[j + start + 1, ancestor_idx] = mask_val
start += depth_counts[i]
return tree_attn_mask
class TreeAttentionImpl(AttentionImpl):
def __init__(
self,
num_heads: int,
head_size: int,
scale: float,
num_kv_heads: int,
alibi_slopes: Optional[list[float]],
sliding_window: Optional[int],
kv_cache_dtype: str,
logits_soft_cap: Optional[float] = None,
attn_type: AttentionType = AttentionType.DECODER,
kv_sharing_target_layer_name: Optional[str] = None,
) -> None:
self.num_heads = num_heads
self.head_size = head_size
self.scale = float(scale)
self.num_kv_heads = num_kv_heads
self.num_queries_per_kv = self.num_heads // self.num_kv_heads
self.kv_cache_dtype = kv_cache_dtype
self.kv_sharing_target_layer_name = kv_sharing_target_layer_name
if alibi_slopes is not None:
alibi_slopes = torch.tensor(alibi_slopes, dtype=torch.float32)
self.alibi_slopes = alibi_slopes
if logits_soft_cap is None:
# Setting logits_soft_cap to 0 means no soft cap.
logits_soft_cap = 0
self.logits_soft_cap = logits_soft_cap
if sliding_window is None:
self.sliding_window = (-1, -1)
else:
self.sliding_window = (sliding_window - 1, 0)
TreeAttentionBackend.validate_head_size(head_size)
if attn_type != AttentionType.DECODER:
raise NotImplementedError("Encoder self-attention and "
"encoder/decoder cross-attention "
"are not implemented for "
"TreeAttentionImpl.")
def forward(
self,
layer: torch.nn.Module,
query: torch.Tensor,
key: torch.Tensor,
value: torch.Tensor,
kv_cache: torch.Tensor,
attn_metadata: TreeAttentionMetadata,
output: Optional[torch.Tensor] = None,
output_scale: Optional[torch.Tensor] = None,
) -> torch.Tensor:
"""Forward pass with TreeAttention.
Args:
query: shape = [num_tokens, num_heads, head_size]
key: shape = [num_tokens, num_kv_heads, head_size]
value: shape = [num_tokens, num_kv_heads, head_size]
kv_cache = [2, num_blocks, block_size, num_kv_heads, head_size]
attn_metadata: Metadata for attention.
Returns:
shape = [num_tokens, num_heads * head_size]
"""
assert output is not None, "Output tensor must be provided."
if output_scale is not None:
raise NotImplementedError(
"fused output quantization is not yet supported"
" for TreeAttentionImpl")
if attn_metadata is None:
# Profiling run.
return output
# Cache the input KVs.
key_cache, value_cache = kv_cache.unbind(0)
if self.kv_sharing_target_layer_name is None:
# Reshape the input keys and values and store them in the cache.
# Skip this if sharing KV cache with an earlier attention layer.
# NOTE(woosuk): Here, key and value are padded while slot_mapping is
# not padded. However, we don't need to do key[:num_actual_tokens]
# and value[:num_actual_tokens] because the reshape_and_cache_flash
# op uses the slot_mapping's shape to determine the number of
# actual tokens.
ops.reshape_and_cache_flash(
key,
value,
key_cache,
value_cache,
attn_metadata.slot_mapping,
self.kv_cache_dtype,
layer._k_scale,
layer._v_scale,
)
num_actual_tokens = attn_metadata.num_actual_tokens
num_decode_tokens = attn_metadata.num_decode_tokens
descale_shape = (attn_metadata.query_start_loc.shape[0] - 1,
key.shape[1])
if prefill_meta := attn_metadata.prefill_metadata:
unified_attention(
q=query[num_decode_tokens:num_actual_tokens],
k=key_cache,
v=value_cache,
out=output[num_decode_tokens:num_actual_tokens],
cu_seqlens_q=prefill_meta.query_start_loc,
max_seqlen_q=prefill_meta.max_query_len,
seqused_k=prefill_meta.seq_lens,
max_seqlen_k=prefill_meta.max_seq_len,
softmax_scale=self.scale,
causal=True,
alibi_slopes=self.alibi_slopes,
window_size=self.sliding_window,
block_table=prefill_meta.block_table,
softcap=self.logits_soft_cap,
q_descale=None, # Not supported
k_descale=layer._k_scale.expand(descale_shape),
v_descale=layer._v_scale.expand(descale_shape),
)
if decode_meta := attn_metadata.decode_metadata:
unified_attention(
q=query[:num_decode_tokens],
k=key_cache,
v=value_cache,
out=output[:num_decode_tokens],
cu_seqlens_q=decode_meta.query_start_loc,
max_seqlen_q=decode_meta.max_query_len,
seqused_k=decode_meta.seq_lens,
max_seqlen_k=decode_meta.max_seq_len,
softmax_scale=self.scale,
causal=True,
alibi_slopes=self.alibi_slopes,
qq_bias=decode_meta.tree_attn_bias,
window_size=self.sliding_window,
block_table=decode_meta.block_table,
softcap=self.logits_soft_cap,
q_descale=None, # Not supported
k_descale=layer._k_scale.expand(descale_shape),
v_descale=layer._v_scale.expand(descale_shape),
)
return output