mirror of
https://git.datalinker.icu/vllm-project/vllm.git
synced 2025-12-23 21:55:02 +08:00
72 lines
1.9 KiB
Python
72 lines
1.9 KiB
Python
"""Custom normalization layers."""
|
|
from typing import Optional, Tuple, Union
|
|
|
|
import torch
|
|
import torch.nn as nn
|
|
|
|
from vllm import _custom_ops as ops
|
|
|
|
|
|
class RMSNorm(nn.Module):
|
|
"""Root mean square normalization.
|
|
|
|
Computes x -> w * x / sqrt(E[x^2] + eps) where w is the learned weight.
|
|
Refer to https://arxiv.org/abs/1910.07467
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
hidden_size: int,
|
|
eps: float = 1e-6,
|
|
) -> None:
|
|
super().__init__()
|
|
self.weight = nn.Parameter(torch.ones(hidden_size))
|
|
self.variance_epsilon = eps
|
|
|
|
def _forward(
|
|
self,
|
|
x: torch.Tensor,
|
|
residual: Optional[torch.Tensor] = None,
|
|
) -> Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]:
|
|
"""PyTorch-native implementation equivalent to forward()."""
|
|
orig_dtype = x.dtype
|
|
x = x.to(torch.float32)
|
|
if residual is not None:
|
|
x = x + residual.to(torch.float32)
|
|
residual = x.to(orig_dtype)
|
|
|
|
variance = x.pow(2).mean(dim=-1, keepdim=True)
|
|
x = x * torch.rsqrt(variance + self.variance_epsilon)
|
|
x = x.to(orig_dtype) * self.weight
|
|
if residual is None:
|
|
return x
|
|
else:
|
|
return x, residual
|
|
|
|
def forward(
|
|
self,
|
|
x: torch.Tensor,
|
|
residual: Optional[torch.Tensor] = None,
|
|
) -> Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]:
|
|
if residual is not None:
|
|
ops.fused_add_rms_norm(
|
|
x,
|
|
residual,
|
|
self.weight.data,
|
|
self.variance_epsilon,
|
|
)
|
|
return x, residual
|
|
out = torch.empty_like(x)
|
|
ops.rms_norm(
|
|
out,
|
|
x,
|
|
self.weight.data,
|
|
self.variance_epsilon,
|
|
)
|
|
return out
|
|
|
|
def extra_repr(self) -> str:
|
|
s = f"hidden_size={self.weight.data.size(0)}"
|
|
s += f", eps={self.variance_epsilon}"
|
|
return s
|