Jinzhen Lin 1656ad3704
[Kernel][Quantization] add w4a8 support for marlin kernel (#24722)
Signed-off-by: Jinzhen Lin <jinzhen.ljz@antgroup.com>
Signed-off-by: Michael Goin <mgoin64@gmail.com>
Signed-off-by: Jinzhen Lin <linjinzhen@hotmail.com>
Co-authored-by: Michael Goin <mgoin64@gmail.com>
Co-authored-by: Michael Goin <mgoin@redhat.com>
2025-11-29 07:19:33 -08:00

719 lines
26 KiB
Python

# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
from collections.abc import Callable
from typing import TYPE_CHECKING, Any, Optional
import torch
from safetensors.torch import _TYPES as _SAFETENSORS_TO_TORCH_DTYPE
from torch.nn import Parameter
import vllm.model_executor.layers.fused_moe # noqa
from vllm import _custom_ops as ops
from vllm.logger import init_logger
from vllm.model_executor.layers.fused_moe.config import (
FusedMoEConfig,
FusedMoEQuantConfig,
)
from vllm.model_executor.layers.fused_moe.fused_marlin_moe import fused_marlin_moe
from vllm.model_executor.layers.fused_moe.layer import (
FusedMoE,
FusedMoEMethodBase,
FusedMoeWeightScaleSupported,
UnquantizedFusedMoEMethod,
)
from vllm.model_executor.layers.linear import (
LinearBase,
LinearMethodBase,
UnquantizedLinearMethod,
set_weight_attrs,
)
from vllm.model_executor.layers.quantization.awq import AWQConfig
from vllm.model_executor.layers.quantization.base_config import (
QuantizationConfig,
QuantizeMethodBase,
)
from vllm.model_executor.layers.quantization.utils import replace_parameter
from vllm.model_executor.layers.quantization.utils.marlin_utils import (
apply_awq_marlin_linear,
awq_to_marlin_zero_points,
check_marlin_supported,
check_marlin_supports_layer,
check_moe_marlin_supports_layer,
get_marlin_input_dtype,
marlin_act_int8_process_scales,
marlin_make_empty_g_idx,
marlin_make_workspace_new,
marlin_moe_permute_scales,
marlin_permute_bias,
marlin_permute_scales,
moe_awq_to_marlin_zero_points,
verify_marlin_supported,
verify_marlin_supports_shape,
)
from vllm.model_executor.layers.quantization.utils.quant_utils import is_layer_skipped
from vllm.model_executor.layers.vocab_parallel_embedding import ParallelLMHead
from vllm.model_executor.parameter import GroupQuantScaleParameter, PackedvLLMParameter
from vllm.platforms import current_platform
from vllm.scalar_type import scalar_types
from vllm.transformers_utils.config import get_safetensors_params_metadata
if TYPE_CHECKING:
from vllm.model_executor.layers.quantization import QuantizationMethods
from vllm.model_executor.models.utils import WeightsMapper
logger = init_logger(__name__)
class AWQMarlinConfig(QuantizationConfig):
"""Config class for AWQ Marlin"""
# num_bits -> type
TYPE_MAP = {
4: scalar_types.uint4,
}
def __init__(
self,
weight_bits: int,
group_size: int,
zero_point: bool,
lm_head_quantized: bool,
modules_to_not_convert: list[str] | None,
full_config: dict[str, Any],
) -> None:
super().__init__()
self.pack_factor = 32 // weight_bits # packed into int32
self.group_size = group_size
self.zero_point = zero_point
self.lm_head_quantized = lm_head_quantized
self.weight_bits = weight_bits
self.modules_to_not_convert = modules_to_not_convert or []
self.full_config = full_config
if self.weight_bits not in self.TYPE_MAP:
raise ValueError(
f"Unsupported num_bits = {self.weight_bits}. "
f"Supported num_bits = {self.TYPE_MAP.keys()}"
)
self.quant_type = self.TYPE_MAP[self.weight_bits]
verify_marlin_supported(
self.quant_type, group_size=self.group_size, has_zp=self.zero_point
)
def __repr__(self) -> str:
return (
f"AWQMarlinConfig(quant_type={self.quant_type}, "
f"group_size={self.group_size}, "
f"zero_point={self.zero_point}, "
f"lm_head_quantized={self.lm_head_quantized}, "
f"modules_to_not_convert={self.modules_to_not_convert})"
)
@classmethod
def get_name(cls) -> "QuantizationMethods":
return "awq_marlin"
@classmethod
def get_supported_act_dtypes(cls) -> list[torch.dtype]:
return [torch.half, torch.bfloat16]
@classmethod
def get_min_capability(cls) -> int:
return 80
@classmethod
def get_config_filenames(cls) -> list[str]:
return ["quantize_config.json"]
@classmethod
def from_config(cls, config: dict[str, Any]) -> "AWQMarlinConfig":
weight_bits = cls.get_from_keys(config, ["bits"])
group_size = cls.get_from_keys(config, ["group_size"])
zero_point = cls.get_from_keys(config, ["zero_point"])
lm_head_quantized = cls.get_from_keys_or(config, ["lm_head"], default=False)
modules_to_not_convert = cls.get_from_keys_or(
config, ["modules_to_not_convert"], None
)
return cls(
weight_bits,
group_size,
zero_point,
lm_head_quantized,
modules_to_not_convert,
config,
)
@classmethod
def override_quantization_method(
cls, hf_quant_cfg, user_quant
) -> Optional["QuantizationMethods"]:
can_convert = cls.is_awq_marlin_compatible(hf_quant_cfg)
is_valid_user_quant = (
user_quant is None or user_quant == "marlin" or user_quant == "awq_marlin"
)
if can_convert and is_valid_user_quant:
msg = (
"The model is convertible to {} during runtime."
" Using {} kernel.".format(cls.get_name(), cls.get_name())
)
logger.info(msg)
return cls.get_name()
if can_convert and user_quant == "awq":
logger.info(
"Detected that the model can run with awq_marlin"
", however you specified quantization=awq explicitly,"
" so forcing awq. Use quantization=awq_marlin for"
" faster inference"
)
return None
def get_quant_method(
self, layer: torch.nn.Module, prefix: str
) -> Optional["QuantizeMethodBase"]:
if isinstance(layer, LinearBase) or (
isinstance(layer, ParallelLMHead) and self.lm_head_quantized
):
if is_layer_skipped(
prefix,
self.modules_to_not_convert,
self.packed_modules_mapping,
skip_with_substr=True,
):
return UnquantizedLinearMethod()
# Check if the layer is supported by AWQMarlin.
if not check_marlin_supports_layer(layer, self.group_size):
logger.warning_once(
"Layer '%s' is not supported by AWQMarlin. Falling back to unoptimized AWQ kernels.", # noqa: E501
prefix,
)
return AWQConfig.from_config(self.full_config).get_quant_method(
layer, prefix
)
quant_method = AWQMarlinLinearMethod(self)
quant_method.input_dtype = get_marlin_input_dtype(prefix)
return quant_method
elif isinstance(layer, FusedMoE):
from vllm.model_executor.layers.quantization.moe_wna16 import MoeWNA16Config
if is_layer_skipped(
prefix,
getattr(self, "modules_to_not_convert", []),
skip_with_substr=True,
):
return UnquantizedFusedMoEMethod(layer.moe_config)
if not check_moe_marlin_supports_layer(layer, self.group_size):
logger.warning_once(
f"Layer '{prefix}' is not supported by AWQMoeMarlin. "
"Falling back to Moe WNA16 kernels."
)
return MoeWNA16Config.from_config(self.full_config).get_quant_method(
layer, prefix
)
moe_quant_method = AWQMarlinMoEMethod(self, layer.moe_config)
moe_quant_method.input_dtype = get_marlin_input_dtype(prefix)
return moe_quant_method
return None
@classmethod
def is_awq_marlin_compatible(cls, quant_config: dict[str, Any]):
# Extract data from quant config.
quant_method = quant_config.get("quant_method", "").lower()
num_bits = quant_config.get("bits")
group_size = quant_config.get("group_size")
zero_point = quant_config.get("zero_point")
if not current_platform.is_cuda():
return False
if quant_method != "awq":
return False
# If we cannot find the info needed in the config, cannot convert.
if num_bits is None or group_size is None or zero_point is None:
return False
if num_bits not in cls.TYPE_MAP:
return False
return check_marlin_supported(
quant_type=cls.TYPE_MAP[num_bits], group_size=group_size, has_zp=zero_point
)
def apply_vllm_mapper(self, hf_to_vllm_mapper: "WeightsMapper"):
if self.modules_to_not_convert:
self.modules_to_not_convert = hf_to_vllm_mapper.apply_list(
self.modules_to_not_convert
)
def maybe_update_config(self, model_name: str, revision: str | None = None):
if self.modules_to_not_convert:
return
unquant_dtypes = [torch.float16, torch.bfloat16, torch.float32]
metadata = get_safetensors_params_metadata(model_name, revision=revision)
layers = {param_name.rsplit(".", 1)[0] for param_name in metadata}
quant_layers: set[str] = {
param_name.rsplit(".", 1)[0]
for param_name, info in metadata.items()
if (dtype := info.get("dtype", None))
and _SAFETENSORS_TO_TORCH_DTYPE[dtype] not in unquant_dtypes
}
self.modules_to_not_convert = list(layers - quant_layers)
class AWQMarlinLinearMethod(LinearMethodBase):
"""Linear method for AWQ Marlin.
Args:
quant_config: The AWQ Marlin quantization config.
"""
def __init__(self, quant_config: AWQMarlinConfig) -> None:
self.quant_config = quant_config
self.quant_type = scalar_types.uint4
self.input_dtype = None
def create_weights(
self,
layer: torch.nn.Module,
input_size_per_partition: int,
output_partition_sizes: list[int],
input_size: int,
output_size: int,
params_dtype: torch.dtype,
**extra_weight_attrs,
) -> None:
del output_size
output_size_per_partition = sum(output_partition_sizes)
weight_loader = extra_weight_attrs.get("weight_loader")
# Normalize group_size
if self.quant_config.group_size != -1:
group_size = self.quant_config.group_size
else:
group_size = input_size
verify_marlin_supports_shape(
output_size_per_partition=output_size_per_partition,
input_size_per_partition=input_size_per_partition,
input_size=input_size,
group_size=group_size,
)
qweight = PackedvLLMParameter(
data=torch.empty(
input_size_per_partition,
output_size_per_partition // self.quant_config.pack_factor,
dtype=torch.int32,
),
input_dim=0,
output_dim=1,
packed_dim=1,
packed_factor=self.quant_config.pack_factor,
weight_loader=weight_loader,
)
num_groups = input_size_per_partition // group_size
layer.num_groups = num_groups
qzeros = PackedvLLMParameter(
data=torch.empty(
num_groups,
output_size_per_partition // self.quant_config.pack_factor,
dtype=torch.int32,
),
input_dim=0,
output_dim=1,
packed_dim=1,
packed_factor=self.quant_config.pack_factor,
weight_loader=weight_loader,
)
scales = GroupQuantScaleParameter(
data=torch.empty(
num_groups,
output_size_per_partition,
dtype=params_dtype,
),
input_dim=0,
output_dim=1,
weight_loader=weight_loader,
)
layer.register_parameter("qweight", qweight)
layer.register_parameter("qzeros", qzeros)
layer.register_parameter("scales", scales)
layer.input_size_per_partition = input_size_per_partition
layer.output_size_per_partition = output_size_per_partition
layer.num_groups = num_groups
# TODO: Update this docs
# Checkpoints are serialized in AutoAWQ format, which is different from the
# marlin format. This function is called after the weights are loaded.
# Here, we handle the repacking
def process_weights_after_loading(self, layer: torch.nn.Module) -> None:
device = layer.qweight.device
layer.qweight = torch.nn.Parameter(layer.qweight.data, requires_grad=False)
layer.qzeros = torch.nn.Parameter(layer.qzeros.data, requires_grad=False)
layer.scales = torch.nn.Parameter(layer.scales.data, requires_grad=False)
# Allocate marlin workspace
layer.workspace = marlin_make_workspace_new(device)
is_a_8bit = self.input_dtype is not None and self.input_dtype.itemsize == 1
if self.input_dtype == torch.float8_e4m3fn:
ops.marlin_int4_fp8_preprocess(layer.qweight, layer.qzeros, inplace=True)
layer.scales.data = layer.scales.data * 512
# Repack weights from AWQ format to marlin format.
marlin_qweight = ops.awq_marlin_repack(
layer.qweight,
size_k=layer.input_size_per_partition,
size_n=layer.output_size_per_partition,
num_bits=self.quant_config.quant_type.size_bits,
is_a_8bit=is_a_8bit,
)
replace_parameter(layer, "qweight", marlin_qweight)
# Permute scales from AWQ format to marlin format.
marlin_scales = marlin_permute_scales(
layer.scales,
size_k=layer.input_size_per_partition,
size_n=layer.output_size_per_partition,
group_size=self.quant_config.group_size,
is_a_8bit=is_a_8bit,
)
if self.input_dtype == torch.int8 and layer.num_groups > 1:
marlin_scales, input_global_scale = marlin_act_int8_process_scales(
marlin_scales
)
layer.register_parameter(
"input_global_scale", Parameter(input_global_scale, requires_grad=False)
)
replace_parameter(layer, "scales", marlin_scales)
# Permute zero-points from AWQ format to marlin format.
marlin_zp = awq_to_marlin_zero_points(
layer.qzeros,
size_k=layer.num_groups,
size_n=layer.output_size_per_partition,
num_bits=self.quant_config.quant_type.size_bits,
is_a_8bit=is_a_8bit,
)
replace_parameter(layer, "qzeros", marlin_zp)
# Not-used
layer.g_idx = marlin_make_empty_g_idx(device)
layer.g_idx_sort_indices = marlin_make_empty_g_idx(device)
if hasattr(layer, "bias") and layer.bias is not None:
layer.bias.data = marlin_permute_bias(layer.bias)
def apply(
self,
layer: torch.nn.Module,
x: torch.Tensor,
bias: torch.Tensor | None = None,
) -> torch.Tensor:
return apply_awq_marlin_linear(
input=x,
weight=layer.qweight,
weight_scale=layer.scales,
weight_zp=layer.qzeros,
g_idx=layer.g_idx,
g_idx_sort_indices=layer.g_idx_sort_indices,
workspace=layer.workspace,
quant_type=self.quant_config.quant_type,
output_size_per_partition=layer.output_size_per_partition,
input_size_per_partition=layer.input_size_per_partition,
input_global_scale=getattr(layer, "input_global_scale", None),
bias=bias,
input_dtype=self.input_dtype,
)
class AWQMarlinMoEMethod(FusedMoEMethodBase):
def __init__(
self,
quant_config: AWQMarlinConfig,
moe: FusedMoEConfig,
):
super().__init__(moe)
self.quant_config = quant_config
if self.quant_config.weight_bits != 4:
raise ValueError("AWQMarlinMoEMethod only supports 4bit now.")
self.quant_type = scalar_types.uint4
self.input_dtype = None
self.use_marlin = True
def create_weights(
self,
layer: torch.nn.Module,
num_experts: int,
hidden_size: int,
intermediate_size_per_partition: int,
params_dtype: torch.dtype,
**extra_weight_attrs,
):
layer.input_dtype = self.input_dtype
extra_weight_attrs.update(
{
"is_transposed": True,
"quant_method": FusedMoeWeightScaleSupported.GROUP.value,
}
)
w13_qweight = Parameter(
torch.empty(
num_experts,
hidden_size,
2 * intermediate_size_per_partition // self.quant_config.pack_factor,
dtype=torch.int32,
),
requires_grad=False,
)
layer.register_parameter("w13_qweight", w13_qweight)
set_weight_attrs(w13_qweight, extra_weight_attrs)
w2_qweight = Parameter(
torch.empty(
num_experts,
intermediate_size_per_partition,
hidden_size // self.quant_config.pack_factor,
dtype=torch.int32,
),
requires_grad=False,
)
layer.register_parameter("w2_qweight", w2_qweight)
set_weight_attrs(w2_qweight, extra_weight_attrs)
num_groups_w13 = hidden_size // self.quant_config.group_size
num_groups_w2 = intermediate_size_per_partition // self.quant_config.group_size
layer.num_groups_w13 = num_groups_w13
layer.num_groups_w2 = num_groups_w2
# WEIGHT_SCALES
# Allocate 2 scales for w1 and w3 respectively.
w13_scales = Parameter(
torch.empty(
num_experts,
num_groups_w13,
intermediate_size_per_partition * 2,
dtype=params_dtype,
),
requires_grad=False,
)
layer.register_parameter("w13_scales", w13_scales)
set_weight_attrs(w13_scales, extra_weight_attrs)
w2_scales = Parameter(
torch.empty(num_experts, num_groups_w2, hidden_size, dtype=params_dtype),
requires_grad=False,
)
layer.register_parameter("w2_scales", w2_scales)
set_weight_attrs(w2_scales, extra_weight_attrs)
# WEIGHT_ZERO_POINT
# Allocate 2 zero points for w1 and w3 respectively.
w13_qzeros = Parameter(
torch.empty(
num_experts,
num_groups_w13,
2 * intermediate_size_per_partition // self.quant_config.pack_factor,
dtype=torch.int32,
),
requires_grad=False,
)
layer.register_parameter("w13_qzeros", w13_qzeros)
set_weight_attrs(w13_qzeros, extra_weight_attrs)
w2_qzeros = Parameter(
torch.empty(
num_experts,
num_groups_w2,
hidden_size // self.quant_config.pack_factor,
dtype=torch.int32,
),
requires_grad=False,
)
layer.register_parameter("w2_qzeros", w2_qzeros)
set_weight_attrs(w2_qzeros, extra_weight_attrs)
device = layer.w13_qweight.device
layer.workspace = marlin_make_workspace_new(device, 4)
def process_weights_after_loading(self, layer: torch.nn.Module) -> None:
num_experts = layer.w13_qweight.shape[0]
device = layer.w13_qweight.device
is_a_8bit = self.input_dtype is not None and self.input_dtype.itemsize == 1
if self.input_dtype == torch.float8_e4m3fn:
ops.marlin_int4_fp8_preprocess(
layer.w13_qweight.view(-1, layer.w13_qweight.size(2)),
layer.w13_qzeros.view(-1, layer.w13_qzeros.size(2)),
inplace=True,
)
ops.marlin_int4_fp8_preprocess(
layer.w2_qweight.view(-1, layer.w2_qweight.size(2)),
layer.w2_qzeros.view(-1, layer.w2_qzeros.size(2)),
inplace=True,
)
layer.w13_scales.data = layer.w13_scales.data * 512
layer.w2_scales.data = layer.w2_scales.data * 512
layer.w13_g_idx_sort_indices = torch.nn.Parameter(
torch.empty((num_experts, 0), dtype=torch.int32, device=device),
requires_grad=False,
)
layer.w2_g_idx_sort_indices = torch.nn.Parameter(
torch.empty((num_experts, 0), dtype=torch.int32, device=device),
requires_grad=False,
)
marlin_w13_qweight = ops.awq_marlin_moe_repack(
layer.w13_qweight,
layer.w13_g_idx_sort_indices,
size_k=layer.w13_qweight.shape[1],
size_n=layer.w13_qweight.shape[2] * self.quant_config.pack_factor,
num_bits=self.quant_config.weight_bits,
is_a_8bit=is_a_8bit,
)
replace_parameter(layer, "w13_qweight", marlin_w13_qweight)
marlin_w2_qweight = ops.awq_marlin_moe_repack(
layer.w2_qweight,
layer.w2_g_idx_sort_indices,
size_k=layer.w2_qweight.shape[1],
size_n=layer.w2_qweight.shape[2] * self.quant_config.pack_factor,
num_bits=self.quant_config.weight_bits,
is_a_8bit=is_a_8bit,
)
replace_parameter(layer, "w2_qweight", marlin_w2_qweight)
# Why does this take the intermediate size for size_k?
marlin_w13_scales = marlin_moe_permute_scales(
s=layer.w13_scales,
size_k=layer.intermediate_size_per_partition,
size_n=layer.w13_scales.shape[2],
group_size=self.quant_config.group_size,
is_a_8bit=is_a_8bit,
)
if self.input_dtype == torch.int8 and layer.num_groups_w13 > 1:
marlin_w13_scales, w13_input_global_scale = marlin_act_int8_process_scales(
marlin_w13_scales
)
layer.register_parameter(
"w13_input_global_scale",
Parameter(w13_input_global_scale, requires_grad=False),
)
replace_parameter(layer, "w13_scales", marlin_w13_scales)
marlin_w2_scales = marlin_moe_permute_scales(
s=layer.w2_scales,
size_k=layer.intermediate_size_per_partition,
size_n=layer.w2_scales.shape[2],
group_size=self.quant_config.group_size,
is_a_8bit=is_a_8bit,
)
if self.input_dtype == torch.int8 and layer.num_groups_w2 > 1:
marlin_w2_scales, w2_input_global_scale = marlin_act_int8_process_scales(
marlin_w2_scales
)
layer.register_parameter(
"w2_input_global_scale",
Parameter(w2_input_global_scale, requires_grad=False),
)
replace_parameter(layer, "w2_scales", marlin_w2_scales)
marlin_w13_zp = moe_awq_to_marlin_zero_points(
layer.w13_qzeros,
size_k=layer.w13_qzeros.shape[1],
size_n=layer.w13_qzeros.shape[2] * self.quant_config.pack_factor,
num_bits=self.quant_config.weight_bits,
is_a_8bit=is_a_8bit,
)
replace_parameter(layer, "w13_qzeros", marlin_w13_zp)
marlin_w2_zp = moe_awq_to_marlin_zero_points(
layer.w2_qzeros,
size_k=layer.w2_qzeros.shape[1],
size_n=layer.w2_qzeros.shape[2] * self.quant_config.pack_factor,
num_bits=self.quant_config.weight_bits,
is_a_8bit=is_a_8bit,
)
replace_parameter(layer, "w2_qzeros", marlin_w2_zp)
if hasattr(layer, "w13_bias") and layer.w13_bias is not None:
layer.w13_bias.data = marlin_permute_bias(layer.w13_bias)
if hasattr(layer, "w2_bias") and layer.w2_bias is not None:
layer.w2_bias.data = marlin_permute_bias(layer.w2_bias)
def get_fused_moe_quant_config(
self, layer: torch.nn.Module
) -> FusedMoEQuantConfig | None:
return None
def apply(
self,
layer: FusedMoE,
x: torch.Tensor,
router_logits: torch.Tensor,
top_k: int,
renormalize: bool,
use_grouped_topk: bool = False,
topk_group: int | None = None,
num_expert_group: int | None = None,
global_num_experts: int = -1,
expert_map: torch.Tensor | None = None,
custom_routing_function: Callable | None = None,
scoring_func: str = "softmax",
routed_scaling_factor: float = 1.0,
e_score_correction_bias: torch.Tensor | None = None,
apply_router_weight_on_input: bool = False,
activation: str = "silu",
enable_eplb: bool = False,
expert_load_view: torch.Tensor | None = None,
logical_to_physical_map: torch.Tensor | None = None,
logical_replica_count: torch.Tensor | None = None,
) -> torch.Tensor | tuple[torch.Tensor, torch.Tensor]:
assert activation == "silu", "Only SiLU activation is supported."
topk_weights, topk_ids, _ = layer.select_experts(
hidden_states=x,
router_logits=router_logits,
)
return fused_marlin_moe(
x,
layer.w13_qweight,
layer.w2_qweight,
getattr(layer, "w13_bias", None),
getattr(layer, "w2_bias", None),
layer.w13_scales,
layer.w2_scales,
router_logits,
topk_weights,
topk_ids,
input_global_scale1=getattr(layer, "w13_input_global_scale", None),
input_global_scale2=getattr(layer, "w2_input_global_scale", None),
quant_type_id=self.quant_type.id,
apply_router_weight_on_input=apply_router_weight_on_input,
global_num_experts=global_num_experts,
expert_map=expert_map,
w1_zeros=layer.w13_qzeros,
w2_zeros=layer.w2_qzeros,
workspace=layer.workspace,
input_dtype=self.input_dtype,
)