vllm/csrc/sparse/cutlass/sparse_scaled_mm_c3x.cuh
Dipika Sikka 60508ffda9
[Kernel]: Cutlass 2:4 Sparsity + FP8/Int8 Quant Support (#10995)
Co-authored-by: Faraz Shahsavan <faraz.shahsavan@gmail.com>
Co-authored-by: ilmarkov <markovilya197@gmail.com>
Co-authored-by: Rahul Tuli <rahul@neuralmagic.com>
Co-authored-by: rshaw@neuralmagic.com <rshaw@neuralmagic.com>
2024-12-18 09:57:16 -05:00

496 lines
20 KiB
Plaintext

// clang-format will break include orders
// clang-format off
#include <cudaTypedefs.h>
#include <torch/all.h>
#include <ATen/cuda/CUDAContext.h>
#include "cutlass/cutlass.h"
#include "cutlass/gemm/device/gemm_universal_adapter.h"
#include "cutlass/epilogue/collective/collective_builder.hpp"
#include "cutlass/gemm/collective/collective_builder.hpp"
#include "core/math.hpp"
#include "cutlass_extensions/cute_utils.cuh"
#include "cutlass_extensions/epilogue/scaled_mm_epilogues_c3x.hpp"
#include "cutlass_extensions/common.hpp"
#include "cutlass_extensions/torch_utils.hpp"
// clang-format on
using namespace cute;
/*
This file defines sparse quantized GEMM operations using the CUTLASS 3.x API,
for NVIDIA GPUs with sm90a (Hopper) or later.
*/
namespace {
// A wrapper for the GEMM kernel that is used to guard against compilation on
// architectures that will never use the kernel. The purpose of this is to
// reduce the size of the compiled binary.
// __CUDA_ARCH__ is not defined in host code, so this lets us smuggle the ifdef
// into code that will be executed on the device where it is defined.
template <typename Kernel>
struct enable_sm90_or_later : Kernel {
template <typename... Args>
CUTLASS_DEVICE void operator()(Args&&... args) {
#if defined __CUDA_ARCH__ && __CUDA_ARCH__ >= 900
Kernel::operator()(std::forward<Args>(args)...);
#endif
}
};
using GemmUniversalMode = cutlass::gemm::GemmUniversalMode;
template <typename ElementAB_, typename ElementD_,
template <typename, typename, typename> typename Epilogue_,
typename TileShape, typename ClusterShape, typename KernelSchedule,
typename EpilogueSchedule, typename AccType,
typename TileSchedule = cutlass::gemm::PersistentScheduler,
GemmUniversalMode Mode_ = GemmUniversalMode::kGemm>
struct cutlass_sparse_3x_gemm {
static const GemmUniversalMode Mode = Mode_;
using ElementAB = ElementAB_;
using ElementD = ElementD_;
using ElementAcc = AccType;
using EpilogueDescriptor =
cutlass::epilogue::collective::detail::EpilogueDescriptor<
TileShape, cutlass::epilogue::collective::EpilogueTileAuto, ElementD,
ElementD, EpilogueSchedule>;
using Epilogue = Epilogue_<ElementAcc, ElementD, EpilogueDescriptor>;
using ElementC = void;
using LayoutC = cutlass::layout::RowMajor;
using LayoutD = LayoutC;
using StrideC = cutlass::detail::TagToStrideA_t<LayoutC>;
using StrideD = cutlass::detail::TagToStrideA_t<LayoutD>;
using LayoutC_Transpose =
typename cutlass::layout::LayoutTranspose<LayoutC>::type;
using LayoutD_Transpose =
typename cutlass::layout::LayoutTranspose<LayoutD>::type;
using EVTCompute = typename Epilogue::EVTCompute;
static constexpr int AlignmentA =
128 / cutlass::sizeof_bits<ElementAB>::value;
static constexpr int AlignmentB =
128 / cutlass::sizeof_bits<ElementAB>::value;
static constexpr int AlignmentCD =
128 / cutlass::sizeof_bits<ElementD>::value;
using CollectiveEpilogue =
typename cutlass::epilogue::collective::CollectiveBuilder<
cutlass::arch::Sm90, cutlass::arch::OpClassTensorOp, TileShape,
ClusterShape, cutlass::epilogue::collective::EpilogueTileAuto,
ElementAcc, ElementAcc, ElementC, LayoutC_Transpose, AlignmentCD,
ElementD, LayoutD_Transpose, AlignmentCD, EpilogueSchedule,
EVTCompute>::CollectiveOp;
static constexpr size_t CEStorageSize =
sizeof(typename CollectiveEpilogue::SharedStorage);
using Stages = typename cutlass::gemm::collective::StageCountAutoCarveout<
static_cast<int>(CEStorageSize)>;
// clang-format off
using CollectiveMainloop =
typename cutlass::gemm::collective::CollectiveBuilder<
cutlass::arch::Sm90, cutlass::arch::OpClassSparseTensorOp,
ElementAB, cutlass::layout::RowMajor, AlignmentA,
ElementAB, cutlass::layout::ColumnMajor, AlignmentB,
ElementAcc, TileShape, ClusterShape,
Stages,
KernelSchedule>::CollectiveOp;
// clang-format on
using KernelType = enable_sm90_or_later<cutlass::gemm::kernel::GemmUniversal<
cute::Shape<int, int, int, int>, CollectiveMainloop, CollectiveEpilogue,
TileSchedule>>;
struct GemmKernel : public KernelType {};
};
template <typename Gemm, typename... EpilogueArgs>
void cutlass_sparse_gemm_caller(torch::Tensor& out, torch::Tensor const& a,
torch::Tensor const& bt_nzs,
torch::Tensor const& bt_meta,
EpilogueArgs&&... epilogue_params) {
using ElementAB = typename Gemm::ElementAB;
using ElementD = typename Gemm::ElementD;
// Interface stride expected from the argument a (will get transposed)
// We compute C^T = B^T * A^T, but we assume B is transposed before
// compression and hence the bt_* naming
using LayoutA = cutlass::layout::RowMajor;
using LayoutB = typename Gemm::GemmKernel::CollectiveMainloop::LayoutA;
using LayoutE = typename Gemm::GemmKernel::CollectiveMainloop::LayoutE;
using LayoutD = cutlass::layout::RowMajor;
using StrideA = cutlass::detail::TagToStrideA_t<LayoutA>;
using StrideD = cutlass::detail::TagToStrideA_t<LayoutD>;
auto layout_A = make_cute_layout<StrideA>(a, "A");
auto layout_D = make_cute_layout<StrideD>(out, "D");
// Transpose A and D
// A doesn't need to be transposed since cutlass expects a NxK matrix
// for B (which is At)
auto stride_At = layout_A.stride();
auto stride_Dt = permute_layout<1, 0, 2>(layout_D).stride();
using GemmKernel = typename Gemm::GemmKernel;
typename GemmKernel::ProblemShape prob_shape{
static_cast<int>(bt_nzs.size(0)), static_cast<int>(size<0>(layout_A)),
static_cast<int>(size<1>(layout_A)), 1};
using ElementE = typename GemmKernel::CollectiveMainloop::ElementE;
using SparseConfig = typename GemmKernel::CollectiveMainloop::SparseConfig;
LayoutB b_layout = SparseConfig::fill_layoutA(prob_shape);
LayoutE e_layout = SparseConfig::fill_layoutE(prob_shape);
auto a_ptr = static_cast<ElementAB*>(a.data_ptr());
auto b_ptr = static_cast<ElementAB*>(bt_nzs.data_ptr());
auto e_ptr = static_cast<ElementE*>(bt_meta.data_ptr());
typename GemmKernel::MainloopArguments mainloop_args{
b_ptr, b_layout, a_ptr, stride_At, e_ptr, e_layout};
auto c_ptr = static_cast<ElementD*>(out.data_ptr());
typename GemmKernel::EpilogueArguments epilogue_args{
Gemm::Epilogue::prepare_args(
std::forward<EpilogueArgs>(epilogue_params)...),
c_ptr, stride_Dt, c_ptr, stride_Dt};
typename GemmKernel::Arguments args{cutlass::gemm::GemmUniversalMode::kGemm,
prob_shape, mainloop_args, epilogue_args};
// Launch the CUTLASS GEMM kernel.
using GemmOp = cutlass::gemm::device::GemmUniversalAdapter<GemmKernel>;
GemmOp gemm_op;
CUTLASS_CHECK(gemm_op.can_implement(args));
size_t workspace_size = gemm_op.get_workspace_size(args);
auto const workspace_options =
torch::TensorOptions().dtype(torch::kUInt8).device(a.device());
auto workspace = torch::empty(workspace_size, workspace_options);
auto stream = at::cuda::getCurrentCUDAStream(a.get_device());
cutlass::Status status = gemm_op.run(args, workspace.data_ptr(), stream);
CUTLASS_CHECK(status);
}
template <typename InType, typename OutType,
template <typename, typename, typename> typename Epilogue>
struct sm90_config_default {};
template <typename OutType,
template <typename, typename, typename> typename Epilogue>
struct sm90_config_default<half_t, OutType, Epilogue> {
// M in (128, inf)
using KernelSchedule = cutlass::gemm::KernelTmaWarpSpecializedPingpong;
using EpilogueSchedule = typename cutlass::epilogue::TmaWarpSpecialized;
using TileShape = Shape<_128, _128, _128>;
using ClusterShape = Shape<_2, _1, _1>;
using Cutlass3xGemm =
cutlass_sparse_3x_gemm<half_t, OutType, Epilogue, TileShape, ClusterShape,
KernelSchedule, EpilogueSchedule, float>;
};
template <typename OutType,
template <typename, typename, typename> typename Epilogue>
struct sm90_config_default<cutlass::bfloat16_t, OutType, Epilogue> {
// M in (128, inf)
using KernelSchedule = cutlass::gemm::KernelTmaWarpSpecializedPingpong;
using EpilogueSchedule = typename cutlass::epilogue::TmaWarpSpecialized;
using TileShape = Shape<_128, _128, _128>;
using ClusterShape = Shape<_2, _1, _1>;
using Cutlass3xGemm =
cutlass_sparse_3x_gemm<cutlass::bfloat16_t, OutType, Epilogue, TileShape,
ClusterShape, KernelSchedule, EpilogueSchedule,
float>;
};
//////////////////////// Cherry-Picking Kernels ////////////////////////
template <typename InType, typename OutType,
template <typename, typename, typename> typename Epilogue>
struct sm90_fp8_config_1 {
static_assert(std::is_same<InType, cutlass::float_e4m3_t>());
using KernelSchedule = cutlass::gemm::KernelTmaWarpSpecializedFP8FastAccum;
using EpilogueSchedule = typename cutlass::epilogue::TmaWarpSpecialized;
using TileShape = Shape<_64, _64, _256>;
using ClusterShape = Shape<_8, _1, _1>;
using Cutlass3xGemm =
cutlass_sparse_3x_gemm<InType, OutType, Epilogue, TileShape, ClusterShape,
KernelSchedule, EpilogueSchedule, float>;
};
template <typename InType, typename OutType,
template <typename, typename, typename> typename Epilogue>
struct sm90_fp8_config_2 {
static_assert(std::is_same<InType, cutlass::float_e4m3_t>());
using KernelSchedule =
cutlass::gemm::KernelTmaWarpSpecializedCooperativeFP8FastAccum;
using EpilogueSchedule =
typename cutlass::epilogue::TmaWarpSpecializedCooperative;
using TileShape = Shape<_128, _64, _256>;
using ClusterShape = Shape<_8, _1, _1>;
using Cutlass3xGemm =
cutlass_sparse_3x_gemm<InType, OutType, Epilogue, TileShape, ClusterShape,
KernelSchedule, EpilogueSchedule, float>;
};
template <typename InType, typename OutType,
template <typename, typename, typename> typename Epilogue>
struct sm90_fp8_config_3 {
static_assert(std::is_same<InType, cutlass::float_e4m3_t>());
using KernelSchedule = cutlass::gemm::KernelTmaWarpSpecializedFP8FastAccum;
using EpilogueSchedule = typename cutlass::epilogue::TmaWarpSpecialized;
using TileShape = Shape<_64, _64, _256>;
using ClusterShape = Shape<_1, _2, _1>;
using Cutlass3xGemm =
cutlass_sparse_3x_gemm<InType, OutType, Epilogue, TileShape, ClusterShape,
KernelSchedule, EpilogueSchedule, float>;
};
template <typename InType, typename OutType,
template <typename, typename, typename> typename Epilogue>
struct sm90_fp8_config_4 {
static_assert(std::is_same<InType, cutlass::float_e4m3_t>());
using KernelSchedule = cutlass::gemm::KernelTmaWarpSpecializedFP8FastAccum;
using EpilogueSchedule =
typename cutlass::epilogue::TmaWarpSpecializedCooperative;
using TileShape = Shape<_64, _128, _256>;
using ClusterShape = Shape<_8, _1, _1>;
using Cutlass3xGemm =
cutlass_sparse_3x_gemm<InType, OutType, Epilogue, TileShape, ClusterShape,
KernelSchedule, EpilogueSchedule, float>;
};
template <typename InType, typename OutType,
template <typename, typename, typename> typename Epilogue>
struct sm90_fp8_config_5 {
static_assert(std::is_same<InType, cutlass::float_e4m3_t>());
using KernelSchedule =
cutlass::gemm::KernelTmaWarpSpecializedPingpongFP8FastAccum;
using EpilogueSchedule = typename cutlass::epilogue::TmaWarpSpecialized;
using TileShape = Shape<_128, _128, _256>;
using ClusterShape = Shape<_8, _1, _1>;
using Cutlass3xGemm =
cutlass_sparse_3x_gemm<InType, OutType, Epilogue, TileShape, ClusterShape,
KernelSchedule, EpilogueSchedule, float>;
};
template <typename InType, typename OutType,
template <typename, typename, typename> typename Epilogue>
struct sm90_fp8_config_6 {
static_assert(std::is_same<InType, cutlass::float_e4m3_t>());
using KernelSchedule = cutlass::gemm::KernelTmaWarpSpecializedFP8FastAccum;
using EpilogueSchedule = typename cutlass::epilogue::TmaWarpSpecialized;
using TileShape = Shape<_64, _128, _256>;
using ClusterShape = Shape<_1, _2, _1>;
using Cutlass3xGemm =
cutlass_sparse_3x_gemm<InType, OutType, Epilogue, TileShape, ClusterShape,
KernelSchedule, EpilogueSchedule, float>;
};
template <typename InType, typename OutType,
template <typename, typename, typename> typename Epilogue>
struct sm90_fp8_config_7 {
static_assert(std::is_same<InType, cutlass::float_e4m3_t>());
using KernelSchedule =
cutlass::gemm::KernelTmaWarpSpecializedCooperativeFP8FastAccum;
using EpilogueSchedule =
typename cutlass::epilogue::TmaWarpSpecializedCooperative;
using TileShape = Shape<_128, _128, _256>;
using ClusterShape = Shape<_1, _1, _1>;
using Cutlass3xGemm =
cutlass_sparse_3x_gemm<InType, OutType, Epilogue, TileShape, ClusterShape,
KernelSchedule, EpilogueSchedule, float>;
};
template <typename InType, typename OutType,
template <typename, typename, typename> typename Epilogue>
struct sm90_fp8_config_8 {
static_assert(std::is_same<InType, cutlass::float_e4m3_t>());
using KernelSchedule =
cutlass::gemm::KernelTmaWarpSpecializedCooperativeFP8FastAccum;
using EpilogueSchedule =
typename cutlass::epilogue::TmaWarpSpecializedCooperative;
using TileShape = Shape<_128, _256, _128>;
using ClusterShape = Shape<_8, _1, _1>;
using Cutlass3xGemm =
cutlass_sparse_3x_gemm<InType, OutType, Epilogue, TileShape, ClusterShape,
KernelSchedule, EpilogueSchedule, float>;
};
////////////////////////////////////////////////////////////////////////
template <typename OutType,
template <typename, typename, typename> typename Epilogue>
struct sm90_config_default<cutlass::float_e4m3_t, OutType, Epilogue> {
// M in (128, inf)
using KernelSchedule = cutlass::gemm::KernelTmaWarpSpecializedFP8FastAccum;
using EpilogueSchedule = typename cutlass::epilogue::TmaWarpSpecialized;
using TileShape = Shape<_128, _128, _128>;
using ClusterShape = Shape<_1, _2, _1>;
using Cutlass3xGemm =
cutlass_sparse_3x_gemm<cutlass::float_e4m3_t, OutType, Epilogue,
TileShape, ClusterShape, KernelSchedule,
EpilogueSchedule, float>;
};
template <typename InType, typename OutType,
template <typename, typename, typename> typename Epilogue>
struct sm90_fp8_config_M64 {
// M in [1, 64]
static_assert(std::is_same<InType, cutlass::float_e4m3_t>());
using KernelSchedule = cutlass::gemm::KernelTmaWarpSpecializedFP8FastAccum;
using EpilogueSchedule =
typename cutlass::epilogue::TmaWarpSpecializedCooperative;
using TileShape = Shape<_64, _64, _256>;
using ClusterShape = Shape<_1, _1, _1>;
using TileSchedule = cutlass::gemm::PersistentScheduler;
using Cutlass3xGemm =
cutlass_sparse_3x_gemm<InType, OutType, Epilogue, TileShape, ClusterShape,
KernelSchedule, EpilogueSchedule, float,
TileSchedule>;
};
template <typename InType, typename OutType,
template <typename, typename, typename> typename Epilogue>
struct sm90_fp8_config_M128 {
// M in (64, 128]
static_assert(std::is_same<InType, cutlass::float_e4m3_t>());
using KernelSchedule =
cutlass::gemm::KernelTmaWarpSpecializedPingpongFP8FastAccum;
using EpilogueSchedule = typename cutlass::epilogue::TmaWarpSpecialized;
using TileShape = Shape<_64, _128, _256>;
using ClusterShape = Shape<_1, _1, _1>;
using TileSchedule = cutlass::gemm::PersistentScheduler;
using Cutlass3xGemm =
cutlass_sparse_3x_gemm<InType, OutType, Epilogue, TileShape, ClusterShape,
KernelSchedule, EpilogueSchedule, float,
TileSchedule>;
};
template <typename InType, typename OutType,
template <typename, typename, typename> typename Epilogue>
struct sm90_fp8_config_M256 {
// M in (128, 256]
static_assert(std::is_same<InType, cutlass::float_e4m3_t>());
using KernelSchedule =
cutlass::gemm::KernelTmaWarpSpecializedCooperativeFP8FastAccum;
using EpilogueSchedule =
typename cutlass::epilogue::TmaWarpSpecializedCooperative;
using TileShape = Shape<_128, _128, _256>;
using ClusterShape = Shape<_1, _1, _1>;
using TileSchedule = cutlass::gemm::PersistentScheduler;
using Cutlass3xGemm =
cutlass_sparse_3x_gemm<InType, OutType, Epilogue, TileShape, ClusterShape,
KernelSchedule, EpilogueSchedule, float,
TileSchedule>;
};
template <typename InType, typename OutType,
template <typename, typename, typename> typename Epilogue>
struct sm90_fp8_config_M512 {
// M in (256, ]
static_assert(std::is_same<InType, cutlass::float_e4m3_t>());
using KernelSchedule =
cutlass::gemm::KernelTmaWarpSpecializedCooperativeFP8FastAccum;
using EpilogueSchedule =
typename cutlass::epilogue::TmaWarpSpecializedCooperative;
using TileShape = Shape<_128, _128, _256>;
using ClusterShape = Shape<_1, _1, _1>;
using TileSchedule = cutlass::gemm::PersistentScheduler;
using Cutlass3xGemm =
cutlass_sparse_3x_gemm<InType, OutType, Epilogue, TileShape, ClusterShape,
KernelSchedule, EpilogueSchedule, float,
TileSchedule>;
};
template <typename OutType,
template <typename, typename, typename> typename Epilogue>
struct sm90_config_default<int8_t, OutType, Epilogue> {
// For M > 128 and any N
using KernelSchedule =
typename cutlass::gemm::KernelTmaWarpSpecializedPingpong;
using EpilogueSchedule = typename cutlass::epilogue::TmaWarpSpecialized;
using TileShape = Shape<_128, _128, _128>;
using ClusterShape = Shape<_2, _1, _1>;
using Cutlass3xGemm =
cutlass_sparse_3x_gemm<int8_t, OutType, Epilogue, TileShape, ClusterShape,
KernelSchedule, EpilogueSchedule, int32_t>;
};
template <typename InType, typename OutType,
template <typename, typename, typename> typename Epilogue>
struct sm90_int8_config_M128 {
// For M in (64, 128] and any N
static_assert(std::is_same<InType, int8_t>());
using KernelSchedule =
typename cutlass::gemm::KernelTmaWarpSpecializedPingpong;
using EpilogueSchedule = typename cutlass::epilogue::TmaWarpSpecialized;
using TileShape = Shape<_64, _128, _128>;
using ClusterShape = Shape<_2, _1, _1>;
using Cutlass3xGemm =
cutlass_sparse_3x_gemm<InType, OutType, Epilogue, TileShape, ClusterShape,
KernelSchedule, EpilogueSchedule, int32_t>;
};
template <typename InType, typename OutType,
template <typename, typename, typename> typename Epilogue>
struct sm90_int8_config_M64 {
// For M in (32, 64] and any N
static_assert(std::is_same<InType, int8_t>());
using KernelSchedule = typename cutlass::gemm::KernelTmaWarpSpecialized;
using EpilogueSchedule = typename cutlass::epilogue::TmaWarpSpecialized;
using TileShape = Shape<_64, _64, _256>;
using ClusterShape = Shape<_1, _1, _1>;
using Cutlass3xGemm =
cutlass_sparse_3x_gemm<InType, OutType, Epilogue, TileShape, ClusterShape,
KernelSchedule, EpilogueSchedule, int32_t>;
};
template <typename InType, typename OutType,
template <typename, typename, typename> typename Epilogue>
struct sm90_int8_config_M32_NBig {
// For M in [1, 32] and N >= 8192
static_assert(std::is_same<InType, int8_t>());
using KernelSchedule = typename cutlass::gemm::KernelTmaWarpSpecialized;
using EpilogueSchedule = typename cutlass::epilogue::TmaWarpSpecialized;
using TileShape = Shape<_64, _128, _256>;
using ClusterShape = Shape<_1, _4, _1>;
using Cutlass3xGemm =
cutlass_sparse_3x_gemm<InType, OutType, Epilogue, TileShape, ClusterShape,
KernelSchedule, EpilogueSchedule, int32_t>;
};
template <typename InType, typename OutType,
template <typename, typename, typename> typename Epilogue>
struct sm90_int8_config_M32_NSmall {
// For M in [1, 32] and N < 8192
static_assert(std::is_same<InType, int8_t>());
using KernelSchedule = typename cutlass::gemm::KernelTmaWarpSpecialized;
using EpilogueSchedule = typename cutlass::epilogue::TmaWarpSpecialized;
using TileShape = Shape<_64, _64, _256>;
using ClusterShape = Shape<_1, _8, _1>;
using Cutlass3xGemm =
cutlass_sparse_3x_gemm<InType, OutType, Epilogue, TileShape, ClusterShape,
KernelSchedule, EpilogueSchedule, int32_t>;
};
} // namespace