mirror of
https://git.datalinker.icu/vllm-project/vllm.git
synced 2025-12-10 01:05:01 +08:00
551 lines
20 KiB
Python
551 lines
20 KiB
Python
# SPDX-License-Identifier: Apache-2.0
|
|
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
|
"""Implementation of SiglipVisionModel intended to be only used
|
|
within a vision language model."""
|
|
|
|
import math
|
|
from collections.abc import Iterable
|
|
from typing import Optional, Union
|
|
|
|
import torch
|
|
from torch import nn
|
|
from transformers import SiglipVisionConfig
|
|
|
|
from vllm.attention.layer import MultiHeadAttention
|
|
from vllm.distributed import divide, get_tensor_model_parallel_world_size
|
|
from vllm.model_executor.layers.activation import get_act_fn
|
|
from vllm.model_executor.layers.linear import (ColumnParallelLinear,
|
|
QKVParallelLinear,
|
|
RowParallelLinear)
|
|
from vllm.model_executor.layers.quantization import QuantizationConfig
|
|
from vllm.model_executor.layers.vocab_parallel_embedding import (
|
|
VocabParallelEmbedding)
|
|
from vllm.model_executor.model_loader.weight_utils import (
|
|
default_weight_loader, maybe_remap_kv_scale_name)
|
|
|
|
from .vision import (VisionEncoderInfo, VisionFeatureSelectStrategy,
|
|
resolve_visual_encoder_outputs)
|
|
|
|
|
|
class SiglipEncoderInfo(VisionEncoderInfo[SiglipVisionConfig]):
|
|
|
|
def get_num_image_tokens(
|
|
self,
|
|
*,
|
|
image_width: int,
|
|
image_height: int,
|
|
) -> int:
|
|
return self.get_patch_grid_length()**2
|
|
|
|
def get_image_size(self) -> int:
|
|
return self.vision_config.image_size
|
|
|
|
def get_patch_size(self) -> int:
|
|
return self.vision_config.patch_size
|
|
|
|
def get_patch_grid_length(self) -> int:
|
|
image_size, patch_size = self.get_image_size(), self.get_patch_size()
|
|
return image_size // patch_size
|
|
|
|
|
|
# Adapted from https://github.com/huggingface/transformers/blob/v4.43.3/src/transformers/models/siglip/modeling_siglip.py#L249 # noqa
|
|
class SiglipVisionEmbeddings(nn.Module):
|
|
|
|
def __init__(self, config: SiglipVisionConfig):
|
|
super().__init__()
|
|
self.config = config
|
|
self.embed_dim = config.hidden_size
|
|
self.image_size = config.image_size
|
|
self.patch_size = config.patch_size
|
|
|
|
self.patch_embedding = nn.Conv2d(
|
|
in_channels=config.num_channels,
|
|
out_channels=self.embed_dim,
|
|
kernel_size=self.patch_size,
|
|
stride=self.patch_size,
|
|
padding="valid",
|
|
)
|
|
|
|
self.num_patches = (self.image_size // self.patch_size)**2
|
|
self.num_positions = self.num_patches
|
|
self.position_embedding = VocabParallelEmbedding(
|
|
self.num_positions, self.embed_dim)
|
|
self.register_buffer(
|
|
"position_ids",
|
|
torch.arange(self.num_positions, dtype=torch.int64).expand(
|
|
(1, -1)),
|
|
persistent=False,
|
|
)
|
|
|
|
def interpolate_pos_encoding(self, embeddings: torch.Tensor, height: int,
|
|
width: int) -> torch.Tensor:
|
|
"""
|
|
This method is an adapted method for SigLIP (due to SigLIP not having
|
|
class embedding unlike other ViTs) that allows the model to interpolate
|
|
the pre-trained position encodings such that it can be usable on higher
|
|
resolution images.
|
|
|
|
Source:
|
|
https://github.com/facebookresearch/dino/blob/de9ee3df6cf39fac952ab558447af1fa1365362a/vision_transformer.py#L174
|
|
"""
|
|
position_embeddings = self.position_embedding.weight.unsqueeze(0)
|
|
num_patches = embeddings.shape[1]
|
|
num_positions = position_embeddings.shape[1]
|
|
if num_patches == num_positions and height == width:
|
|
return position_embeddings
|
|
|
|
dim = embeddings.shape[-1]
|
|
height = height // self.patch_size
|
|
width = width // self.patch_size
|
|
# we add a small number to avoid floating point error
|
|
# in the interpolation
|
|
# see discussion at https://github.com/facebookresearch/dino/issues/8
|
|
height, width = height + 0.1, width + 0.1
|
|
|
|
patch_pos_embed = position_embeddings.reshape(
|
|
1, int(math.sqrt(num_positions)), int(math.sqrt(num_positions)),
|
|
dim)
|
|
patch_pos_embed = patch_pos_embed.permute(0, 3, 1, 2)
|
|
patch_pos_embed = nn.functional.interpolate(
|
|
patch_pos_embed,
|
|
scale_factor=(
|
|
height / math.sqrt(num_positions),
|
|
width / math.sqrt(num_positions),
|
|
),
|
|
mode="bicubic",
|
|
align_corners=False,
|
|
)
|
|
if (int(height) != patch_pos_embed.shape[-2]
|
|
or int(width) != patch_pos_embed.shape[-1]):
|
|
raise ValueError("Width or height does not match with "
|
|
"the interpolated position embeddings")
|
|
|
|
patch_pos_embed = patch_pos_embed.permute(0, 2, 3, 1).view(1, -1, dim)
|
|
return patch_pos_embed
|
|
|
|
def forward(self,
|
|
pixel_values: torch.Tensor,
|
|
interpolate_pos_encoding: bool = False) -> torch.Tensor:
|
|
_, _, height, width = pixel_values.shape
|
|
target_dtype = self.patch_embedding.weight.dtype
|
|
patch_embeds = self.patch_embedding(pixel_values.to(
|
|
dtype=target_dtype)) # shape = [*, width, grid, grid]
|
|
embeddings = patch_embeds.flatten(2).transpose(1, 2)
|
|
|
|
if interpolate_pos_encoding:
|
|
embeddings += self.interpolate_pos_encoding(
|
|
embeddings, height, width)
|
|
else:
|
|
embeddings += self.position_embedding(self.position_ids)
|
|
return embeddings
|
|
|
|
|
|
class SiglipAttention(nn.Module):
|
|
|
|
def __init__(
|
|
self,
|
|
config: SiglipVisionConfig,
|
|
quant_config: Optional[QuantizationConfig] = None,
|
|
prefix: str = "",
|
|
) -> None:
|
|
super().__init__()
|
|
|
|
self.config = config
|
|
self.embed_dim = config.hidden_size
|
|
self.num_heads = config.num_attention_heads
|
|
self.head_dim = self.embed_dim // self.num_heads
|
|
if self.head_dim * self.num_heads != self.embed_dim:
|
|
raise ValueError(f"embed_dim must be divisible by num_heads (got "
|
|
"`embed_dim`: {self.embed_dim} and `num_heads`:"
|
|
f" {self.num_heads}).")
|
|
|
|
self.scale = self.head_dim**-0.5
|
|
self.dropout = config.attention_dropout
|
|
self.qkv_proj = QKVParallelLinear(
|
|
hidden_size=self.embed_dim,
|
|
head_size=self.head_dim,
|
|
total_num_heads=self.num_heads,
|
|
quant_config=quant_config,
|
|
prefix=f"{prefix}.qkv_proj",
|
|
)
|
|
|
|
self.out_proj = RowParallelLinear(
|
|
input_size=self.embed_dim,
|
|
output_size=self.embed_dim,
|
|
quant_config=quant_config,
|
|
prefix=f"{prefix}.out_proj",
|
|
)
|
|
|
|
self.tp_size = get_tensor_model_parallel_world_size()
|
|
self.num_heads_per_partition = divide(self.num_heads, self.tp_size)
|
|
|
|
self.attn = MultiHeadAttention(self.num_heads_per_partition,
|
|
self.head_dim, self.scale)
|
|
|
|
def forward(
|
|
self,
|
|
hidden_states: torch.Tensor,
|
|
) -> torch.Tensor:
|
|
"""Input shape: Batch x Time x Channel"""
|
|
qkv_states, _ = self.qkv_proj(hidden_states)
|
|
query_states, key_states, value_states = qkv_states.chunk(3, dim=-1)
|
|
|
|
out = self.attn(query_states, key_states, value_states)
|
|
attn_output, _ = self.out_proj(out)
|
|
|
|
return attn_output, None
|
|
|
|
|
|
class SiglipMLP(nn.Module):
|
|
|
|
def __init__(
|
|
self,
|
|
config: SiglipVisionConfig,
|
|
quant_config: Optional[QuantizationConfig] = None,
|
|
prefix: str = "",
|
|
) -> None:
|
|
super().__init__()
|
|
|
|
self.config = config
|
|
self.activation_fn = get_act_fn(config.hidden_act)
|
|
# Special handling for BNB and torchao quantization
|
|
if quant_config and quant_config.get_name() in [
|
|
"bitsandbytes", "torchao"
|
|
]:
|
|
quantizable = True
|
|
else:
|
|
# For other quantization, we require the hidden size to be a
|
|
# multiple of 64
|
|
quantizable = (config.hidden_size % 64 == 0
|
|
and config.intermediate_size % 64 == 0)
|
|
self.fc1 = ColumnParallelLinear(
|
|
config.hidden_size,
|
|
config.intermediate_size,
|
|
quant_config=quant_config if quantizable else None,
|
|
prefix=f"{prefix}.fc1",
|
|
)
|
|
self.fc2 = RowParallelLinear(
|
|
config.intermediate_size,
|
|
config.hidden_size,
|
|
quant_config=quant_config if quantizable else None,
|
|
prefix=f"{prefix}.fc2",
|
|
)
|
|
|
|
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
|
hidden_states, _ = self.fc1(hidden_states)
|
|
hidden_states = self.activation_fn(hidden_states)
|
|
hidden_states, _ = self.fc2(hidden_states)
|
|
return hidden_states
|
|
|
|
|
|
class SiglipEncoderLayer(nn.Module):
|
|
|
|
def __init__(
|
|
self,
|
|
config: SiglipVisionConfig,
|
|
quant_config: Optional[QuantizationConfig] = None,
|
|
prefix: str = "",
|
|
) -> None:
|
|
super().__init__()
|
|
|
|
self.embed_dim = config.hidden_size
|
|
|
|
self.self_attn = SiglipAttention(
|
|
config,
|
|
quant_config=quant_config,
|
|
prefix=f"{prefix}.self_attn",
|
|
)
|
|
self.layer_norm1 = nn.LayerNorm(self.embed_dim,
|
|
eps=config.layer_norm_eps)
|
|
self.mlp = SiglipMLP(
|
|
config,
|
|
quant_config=quant_config,
|
|
prefix=f"{prefix}.mlp",
|
|
)
|
|
self.layer_norm2 = nn.LayerNorm(self.embed_dim,
|
|
eps=config.layer_norm_eps)
|
|
|
|
def forward(
|
|
self,
|
|
hidden_states: torch.Tensor,
|
|
) -> tuple[torch.Tensor, None]:
|
|
residual = hidden_states
|
|
|
|
hidden_states = self.layer_norm1(hidden_states)
|
|
hidden_states, _ = self.self_attn(hidden_states=hidden_states)
|
|
hidden_states += residual
|
|
|
|
residual = hidden_states
|
|
hidden_states = self.layer_norm2(hidden_states)
|
|
hidden_states = self.mlp(hidden_states)
|
|
hidden_states += residual
|
|
|
|
return hidden_states, None
|
|
|
|
|
|
class SiglipEncoder(nn.Module):
|
|
|
|
def __init__(
|
|
self,
|
|
config: SiglipVisionConfig,
|
|
quant_config: Optional[QuantizationConfig] = None,
|
|
num_hidden_layers_override: Optional[int] = None,
|
|
prefix: str = "",
|
|
) -> None:
|
|
super().__init__()
|
|
|
|
self.config = config
|
|
|
|
if num_hidden_layers_override is None:
|
|
num_hidden_layers = config.num_hidden_layers
|
|
else:
|
|
num_hidden_layers = num_hidden_layers_override
|
|
|
|
self.layers = nn.ModuleList([
|
|
SiglipEncoderLayer(config,
|
|
quant_config=quant_config,
|
|
prefix=f"{prefix}.layers.{layer_idx}")
|
|
for layer_idx in range(num_hidden_layers)
|
|
])
|
|
|
|
def forward(
|
|
self,
|
|
inputs_embeds: torch.Tensor,
|
|
return_all_hidden_states: bool,
|
|
) -> Union[torch.Tensor, list[torch.Tensor]]:
|
|
hidden_states_pool = [inputs_embeds]
|
|
hidden_states = inputs_embeds
|
|
|
|
for encoder_layer in self.layers:
|
|
hidden_states, _ = encoder_layer(hidden_states)
|
|
if return_all_hidden_states:
|
|
hidden_states_pool.append(hidden_states)
|
|
# If we have multiple feature sample layers, we return all hidden
|
|
# states in order and grab the ones we need by index.
|
|
if return_all_hidden_states:
|
|
return hidden_states_pool
|
|
return hidden_states
|
|
|
|
|
|
class SiglipMultiheadAttentionPoolingHead(nn.Module):
|
|
"""Multihead Attention Pooling."""
|
|
|
|
def __init__(
|
|
self,
|
|
config: SiglipVisionConfig,
|
|
quant_config: Optional[QuantizationConfig] = None,
|
|
prefix: str = "",
|
|
) -> None:
|
|
super().__init__()
|
|
|
|
self.probe = nn.Parameter(torch.randn(1, 1, config.hidden_size))
|
|
# TODO(ChristopherCho): Implement vLLM version of MultiheadAttention
|
|
self.attention = torch.nn.MultiheadAttention(
|
|
config.hidden_size, config.num_attention_heads, batch_first=True)
|
|
self.layernorm = nn.LayerNorm(config.hidden_size,
|
|
eps=config.layer_norm_eps)
|
|
self.mlp = SiglipMLP(config=config,
|
|
quant_config=quant_config,
|
|
prefix=f"{prefix}.mlp")
|
|
|
|
def forward(self, hidden_state: torch.Tensor) -> torch.Tensor:
|
|
batch_size = hidden_state.shape[0]
|
|
probe = self.probe.repeat(batch_size, 1, 1)
|
|
|
|
hidden_state = self.attention(probe, hidden_state, hidden_state)[0]
|
|
|
|
residual = hidden_state
|
|
hidden_state = self.layernorm(hidden_state)
|
|
hidden_state = self.mlp(hidden_state)
|
|
hidden_state += residual
|
|
|
|
return hidden_state[:, 0]
|
|
|
|
|
|
class SiglipVisionTransformer(nn.Module):
|
|
|
|
def __init__(
|
|
self,
|
|
config: SiglipVisionConfig,
|
|
quant_config: Optional[QuantizationConfig] = None,
|
|
*,
|
|
num_hidden_layers_override: Optional[int] = None,
|
|
require_post_norm: Optional[bool] = None,
|
|
prefix: str = "",
|
|
) -> None:
|
|
super().__init__()
|
|
|
|
self.config = config
|
|
embed_dim = config.hidden_size
|
|
|
|
self.embeddings = SiglipVisionEmbeddings(config)
|
|
|
|
self.encoder = SiglipEncoder(
|
|
config,
|
|
quant_config=quant_config,
|
|
num_hidden_layers_override=num_hidden_layers_override,
|
|
prefix=f"{prefix}.encoder",
|
|
)
|
|
|
|
num_hidden_layers = config.num_hidden_layers
|
|
if len(self.encoder.layers) > config.num_hidden_layers:
|
|
raise ValueError(
|
|
f"The original encoder only has {num_hidden_layers} "
|
|
f"layers, but you requested {len(self.encoder.layers)} layers."
|
|
)
|
|
|
|
# If possible, skip post_layernorm to conserve memory
|
|
if require_post_norm is None:
|
|
require_post_norm = len(self.encoder.layers) == num_hidden_layers
|
|
|
|
if require_post_norm:
|
|
self.post_layernorm = nn.LayerNorm(embed_dim,
|
|
eps=config.layer_norm_eps)
|
|
else:
|
|
self.post_layernorm = None
|
|
|
|
self.use_head = (True if not hasattr(config, "vision_use_head") else
|
|
config.vision_use_head)
|
|
if self.use_head:
|
|
self.head = SiglipMultiheadAttentionPoolingHead(
|
|
config=config,
|
|
quant_config=quant_config,
|
|
prefix=f"{prefix}.head",
|
|
)
|
|
|
|
def forward(
|
|
self,
|
|
pixel_values: torch.Tensor,
|
|
*,
|
|
interpolate_pos_encoding: bool = False,
|
|
select_layers: Optional[list[int]] = None,
|
|
feature_select_strategy: Optional[VisionFeatureSelectStrategy] = None,
|
|
) -> torch.Tensor:
|
|
hidden_states = self.embeddings(
|
|
pixel_values,
|
|
interpolate_pos_encoding=interpolate_pos_encoding,
|
|
)
|
|
|
|
# Produces either the last layer output or all of the hidden states,
|
|
# depending on if we have select_layers or not
|
|
encoder_outputs = self.encoder(
|
|
inputs_embeds=hidden_states,
|
|
return_all_hidden_states=select_layers is not None,
|
|
)
|
|
|
|
# Handle post-norm (if applicable) and stacks feature layers if needed
|
|
encoder_outputs = resolve_visual_encoder_outputs(
|
|
encoder_outputs,
|
|
self.post_layernorm,
|
|
select_layers=select_layers,
|
|
max_possible_layers=self.config.num_hidden_layers,
|
|
feature_select_strategy=feature_select_strategy,
|
|
)
|
|
|
|
# TODO: add this back when pooled_output is used in inference.
|
|
# if self.use_head:
|
|
# pooled_output = self.head(encoder_outputs)
|
|
|
|
return encoder_outputs
|
|
|
|
|
|
class SiglipVisionModel(nn.Module):
|
|
config_class = SiglipVisionConfig
|
|
main_input_name = "pixel_values"
|
|
|
|
def __init__(
|
|
self,
|
|
config: SiglipVisionConfig,
|
|
quant_config: Optional[QuantizationConfig] = None,
|
|
*,
|
|
num_hidden_layers_override: Optional[int] = None,
|
|
require_post_norm: Optional[bool] = None,
|
|
prefix: str = "",
|
|
) -> None:
|
|
super().__init__()
|
|
|
|
self.vision_model = SiglipVisionTransformer(
|
|
config,
|
|
quant_config,
|
|
num_hidden_layers_override=num_hidden_layers_override,
|
|
require_post_norm=require_post_norm,
|
|
prefix=f"{prefix}.vision_model",
|
|
)
|
|
|
|
def get_input_embeddings(self) -> nn.Module:
|
|
return self.vision_model.embeddings.patch_embedding
|
|
|
|
@property
|
|
def dtype(self):
|
|
return self.get_input_embeddings().weight.dtype
|
|
|
|
def forward(
|
|
self,
|
|
pixel_values: torch.Tensor,
|
|
interpolate_pos_encoding: bool = False,
|
|
select_layers: Optional[list[int]] = None,
|
|
feature_select_strategy: Optional[VisionFeatureSelectStrategy] = None,
|
|
) -> torch.Tensor:
|
|
return self.vision_model(
|
|
pixel_values=pixel_values,
|
|
interpolate_pos_encoding=interpolate_pos_encoding,
|
|
select_layers=select_layers,
|
|
feature_select_strategy=feature_select_strategy,
|
|
)
|
|
|
|
def load_weights(self, weights: Iterable[tuple[str,
|
|
torch.Tensor]]) -> set[str]:
|
|
stacked_params_mapping = [
|
|
# (param_name, shard_name, shard_id)
|
|
("qkv_proj", "q_proj", "q"),
|
|
("qkv_proj", "k_proj", "k"),
|
|
("qkv_proj", "v_proj", "v"),
|
|
]
|
|
params_dict = dict(self.named_parameters())
|
|
loaded_params: set[str] = set()
|
|
layer_count = len(self.vision_model.encoder.layers)
|
|
|
|
for name, loaded_weight in weights:
|
|
# post_layernorm is optional in SiglipVisionModel
|
|
if (name.startswith("vision_model.post_layernorm")
|
|
and self.vision_model.post_layernorm is None):
|
|
continue
|
|
|
|
# omit layers when num_hidden_layers_override is set
|
|
if name.startswith("vision_model.encoder.layers"):
|
|
layer_idx = int(name.split(".")[3])
|
|
if layer_idx >= layer_count:
|
|
continue
|
|
|
|
# Check if this is a scale parameter that needs remapping first
|
|
if name.endswith(
|
|
(".k_scale", ".v_scale", ".q_scale", ".prob_scale")):
|
|
# Try to remap the scale name first
|
|
remapped_name = maybe_remap_kv_scale_name(name, params_dict)
|
|
if remapped_name is not None and remapped_name in params_dict:
|
|
# Successfully remapped, use the remapped name
|
|
param = params_dict[remapped_name]
|
|
weight_loader = getattr(param, "weight_loader",
|
|
default_weight_loader)
|
|
weight_loader(param, loaded_weight)
|
|
loaded_params.add(remapped_name)
|
|
continue
|
|
# If remapping failed, continue with normal processing
|
|
|
|
for (param_name, weight_name, shard_id) in stacked_params_mapping:
|
|
if weight_name not in name:
|
|
continue
|
|
name = name.replace(weight_name, param_name)
|
|
|
|
param = params_dict[name]
|
|
weight_loader = param.weight_loader
|
|
weight_loader(param, loaded_weight, shard_id)
|
|
break
|
|
else:
|
|
param = params_dict[name]
|
|
weight_loader = getattr(param, "weight_loader",
|
|
default_weight_loader)
|
|
weight_loader(param, loaded_weight)
|
|
loaded_params.add(name)
|
|
return loaded_params
|