mirror of
https://git.datalinker.icu/vllm-project/vllm.git
synced 2025-12-17 15:25:40 +08:00
321 lines
11 KiB
Python
321 lines
11 KiB
Python
"""Custom activation functions."""
|
|
import math
|
|
from typing import Optional
|
|
|
|
import torch
|
|
import torch.nn as nn
|
|
import torch.nn.functional as F
|
|
|
|
from vllm.distributed import (divide, get_tensor_model_parallel_rank,
|
|
get_tensor_model_parallel_world_size)
|
|
from vllm.model_executor.custom_op import CustomOp
|
|
from vllm.model_executor.utils import set_weight_attrs
|
|
from vllm.platforms import current_platform
|
|
from vllm.utils import LazyDict
|
|
|
|
|
|
@CustomOp.register("fatrelu_and_mul")
|
|
class FatreluAndMul(CustomOp):
|
|
"""An activation function for FATReLU.
|
|
|
|
The function computes x -> FATReLU(x[:d]) * x[d:] where
|
|
d = x.shape[-1] // 2.
|
|
This is used in openbmb/MiniCPM-S-1B-sft.
|
|
|
|
Shapes:
|
|
x: (num_tokens, 2 * d) or (batch_size, seq_len, 2 * d)
|
|
return: (num_tokens, d) or (batch_size, seq_len, d)
|
|
"""
|
|
|
|
def __init__(self, threshold: float = 0.):
|
|
super().__init__()
|
|
self.threshold = threshold
|
|
if current_platform.is_cuda_alike() or current_platform.is_cpu():
|
|
self.op = torch.ops._C.fatrelu_and_mul
|
|
|
|
def forward_native(self, x: torch.Tensor) -> torch.Tensor:
|
|
d = x.shape[-1] // 2
|
|
x1 = x[..., :d]
|
|
x2 = x[..., d:]
|
|
x1 = F.threshold(x1, self.threshold, 0.0)
|
|
return x1 * x2
|
|
|
|
def forward_cuda(self, x: torch.Tensor) -> torch.Tensor:
|
|
d = x.shape[-1] // 2
|
|
output_shape = (x.shape[:-1] + (d, ))
|
|
out = torch.empty(output_shape, dtype=x.dtype, device=x.device)
|
|
self.op(out, x, self.threshold)
|
|
return out
|
|
|
|
|
|
@CustomOp.register("silu_and_mul")
|
|
class SiluAndMul(CustomOp):
|
|
"""An activation function for SwiGLU.
|
|
|
|
The function computes x -> silu(x[:d]) * x[d:] where d = x.shape[-1] // 2.
|
|
|
|
Shapes:
|
|
x: (num_tokens, 2 * d) or (batch_size, seq_len, 2 * d)
|
|
return: (num_tokens, d) or (batch_size, seq_len, d)
|
|
"""
|
|
|
|
def __init__(self):
|
|
super().__init__()
|
|
if current_platform.is_cuda_alike() or current_platform.is_cpu():
|
|
self.op = torch.ops._C.silu_and_mul
|
|
elif current_platform.is_xpu():
|
|
from vllm._ipex_ops import ipex_ops
|
|
self.op = ipex_ops.silu_and_mul
|
|
|
|
def forward_native(self, x: torch.Tensor) -> torch.Tensor:
|
|
"""PyTorch-native implementation equivalent to forward()."""
|
|
d = x.shape[-1] // 2
|
|
return F.silu(x[..., :d]) * x[..., d:]
|
|
|
|
def forward_cuda(self, x: torch.Tensor) -> torch.Tensor:
|
|
d = x.shape[-1] // 2
|
|
output_shape = (x.shape[:-1] + (d, ))
|
|
out = torch.empty(output_shape, dtype=x.dtype, device=x.device)
|
|
self.op(out, x)
|
|
return out
|
|
|
|
def forward_xpu(self, x: torch.Tensor) -> torch.Tensor:
|
|
d = x.shape[-1] // 2
|
|
output_shape = (x.shape[:-1] + (d, ))
|
|
out = torch.empty(output_shape, dtype=x.dtype, device=x.device)
|
|
self.op(out, x)
|
|
return out
|
|
|
|
|
|
@CustomOp.register("gelu_and_mul")
|
|
class GeluAndMul(CustomOp):
|
|
"""An activation function for GeGLU.
|
|
|
|
The function computes x -> GELU(x[:d]) * x[d:] where d = x.shape[-1] // 2.
|
|
|
|
Shapes:
|
|
x: (batch_size, seq_len, 2 * d) or (num_tokens, 2 * d)
|
|
return: (batch_size, seq_len, d) or (num_tokens, d)
|
|
"""
|
|
|
|
def __init__(self, approximate: str = "none"):
|
|
super().__init__()
|
|
self.approximate = approximate
|
|
if approximate not in ("none", "tanh"):
|
|
raise ValueError(f"Unknown approximate mode: {approximate}")
|
|
if current_platform.is_cuda_alike() or current_platform.is_cpu():
|
|
if approximate == "none":
|
|
self.op = torch.ops._C.gelu_and_mul
|
|
elif approximate == "tanh":
|
|
self.op = torch.ops._C.gelu_tanh_and_mul
|
|
elif current_platform.is_xpu():
|
|
from vllm._ipex_ops import ipex_ops
|
|
if approximate == "none":
|
|
self.op = ipex_ops.gelu_and_mul
|
|
else:
|
|
self.op = ipex_ops.gelu_tanh_and_mul
|
|
|
|
def forward_native(self, x: torch.Tensor) -> torch.Tensor:
|
|
"""PyTorch-native implementation equivalent to forward()."""
|
|
d = x.shape[-1] // 2
|
|
return F.gelu(x[..., :d], approximate=self.approximate) * x[..., d:]
|
|
|
|
def forward_cuda(self, x: torch.Tensor) -> torch.Tensor:
|
|
d = x.shape[-1] // 2
|
|
output_shape = (x.shape[:-1] + (d, ))
|
|
out = torch.empty(output_shape, dtype=x.dtype, device=x.device)
|
|
self.op(out, x)
|
|
return out
|
|
|
|
def forward_xpu(self, x: torch.Tensor) -> torch.Tensor:
|
|
d = x.shape[-1] // 2
|
|
output_shape = (x.shape[:-1] + (d, ))
|
|
out = torch.empty(output_shape, dtype=x.dtype, device=x.device)
|
|
self.op(out, x)
|
|
return out
|
|
|
|
def extra_repr(self) -> str:
|
|
return f'approximate={repr(self.approximate)}'
|
|
|
|
|
|
@CustomOp.register("gelu_new")
|
|
class NewGELU(CustomOp):
|
|
|
|
def __init__(self):
|
|
super().__init__()
|
|
if current_platform.is_cuda_alike() or current_platform.is_cpu():
|
|
self.op = torch.ops._C.gelu_new
|
|
elif current_platform.is_xpu():
|
|
from vllm._ipex_ops import ipex_ops
|
|
self.op = ipex_ops.gelu_new
|
|
|
|
def forward_native(self, x: torch.Tensor) -> torch.Tensor:
|
|
"""PyTorch-native implementation equivalent to forward()."""
|
|
c = math.sqrt(2.0 / math.pi)
|
|
return 0.5 * x * (1.0 + torch.tanh(c *
|
|
(x + 0.044715 * torch.pow(x, 3.0))))
|
|
|
|
def forward_cuda(self, x: torch.Tensor) -> torch.Tensor:
|
|
out = torch.empty_like(x)
|
|
self.op(out, x)
|
|
return out
|
|
|
|
def forward_xpu(self, x: torch.Tensor) -> torch.Tensor:
|
|
return self.op(x)
|
|
|
|
|
|
@CustomOp.register("gelu_fast")
|
|
class FastGELU(CustomOp):
|
|
|
|
def __init__(self):
|
|
super().__init__()
|
|
if current_platform.is_cuda_alike() or current_platform.is_cpu():
|
|
self.op = torch.ops._C.gelu_fast
|
|
elif current_platform.is_xpu():
|
|
from vllm._ipex_ops import ipex_ops
|
|
self.op = ipex_ops.gelu_fast
|
|
|
|
def forward_native(self, x: torch.Tensor) -> torch.Tensor:
|
|
"""PyTorch-native implementation equivalent to forward()."""
|
|
return 0.5 * x * (1.0 + torch.tanh(x * 0.7978845608 *
|
|
(1.0 + 0.044715 * x * x)))
|
|
|
|
def forward_cuda(self, x: torch.Tensor) -> torch.Tensor:
|
|
out = torch.empty_like(x)
|
|
self.op(out, x)
|
|
return out
|
|
|
|
def forward_xpu(self, x: torch.Tensor) -> torch.Tensor:
|
|
return self.op(x)
|
|
|
|
|
|
@CustomOp.register("quick_gelu")
|
|
class QuickGELU(CustomOp):
|
|
# https://github.com/huggingface/transformers/blob/main/src/transformers/activations.py#L90
|
|
def __init__(self):
|
|
super().__init__()
|
|
if current_platform.is_cuda_alike() or current_platform.is_cpu():
|
|
self.op = torch.ops._C.gelu_quick
|
|
elif current_platform.is_xpu():
|
|
from vllm._ipex_ops import ipex_ops
|
|
self.op = ipex_ops.gelu_quick
|
|
|
|
def forward_native(self, x: torch.Tensor) -> torch.Tensor:
|
|
"""PyTorch-native implementation equivalent to forward()."""
|
|
return x * torch.sigmoid(1.702 * x)
|
|
|
|
def forward_cuda(self, x: torch.Tensor) -> torch.Tensor:
|
|
out = torch.empty_like(x)
|
|
self.op(out, x)
|
|
return out
|
|
|
|
def forward_xpu(self, x: torch.Tensor) -> torch.Tensor:
|
|
out = torch.empty_like(x)
|
|
self.op(out, x)
|
|
return out
|
|
|
|
# TODO implement forward_xpu for QuickGELU
|
|
# def forward_xpu(self, x: torch.Tensor) -> torch.Tensor:
|
|
|
|
|
|
@CustomOp.register("relu2")
|
|
class ReLUSquaredActivation(CustomOp):
|
|
"""
|
|
Applies the relu^2 activation introduced in https://arxiv.org/abs/2109.08668v2
|
|
"""
|
|
|
|
def forward_native(self, x: torch.Tensor) -> torch.Tensor:
|
|
"""PyTorch-native implementation equivalent to forward()."""
|
|
return torch.square(F.relu(x))
|
|
|
|
def forward_cuda(self, x: torch.Tensor) -> torch.Tensor:
|
|
return self.forward_native(x)
|
|
|
|
|
|
class ScaledActivation(nn.Module):
|
|
"""An activation function with post-scale parameters.
|
|
|
|
This is used for some quantization methods like AWQ.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
act_module: nn.Module,
|
|
intermediate_size: int,
|
|
input_is_parallel: bool = True,
|
|
params_dtype: Optional[torch.dtype] = None,
|
|
):
|
|
super().__init__()
|
|
self.act = act_module
|
|
self.input_is_parallel = input_is_parallel
|
|
if input_is_parallel:
|
|
tp_size = get_tensor_model_parallel_world_size()
|
|
intermediate_size_per_partition = divide(intermediate_size,
|
|
tp_size)
|
|
else:
|
|
intermediate_size_per_partition = intermediate_size
|
|
if params_dtype is None:
|
|
params_dtype = torch.get_default_dtype()
|
|
self.scales = nn.Parameter(
|
|
torch.empty(intermediate_size_per_partition, dtype=params_dtype))
|
|
set_weight_attrs(self.scales, {"weight_loader": self.weight_loader})
|
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
|
return self.act(x) / self.scales
|
|
|
|
def weight_loader(self, param: nn.Parameter, loaded_weight: torch.Tensor):
|
|
param_data = param.data
|
|
if self.input_is_parallel:
|
|
tp_rank = get_tensor_model_parallel_rank()
|
|
shard_size = param_data.shape[0]
|
|
start_idx = tp_rank * shard_size
|
|
loaded_weight = loaded_weight.narrow(0, start_idx, shard_size)
|
|
assert param_data.shape == loaded_weight.shape
|
|
param_data.copy_(loaded_weight)
|
|
|
|
|
|
_ACTIVATION_REGISTRY = LazyDict({
|
|
"gelu":
|
|
lambda: nn.GELU(),
|
|
"gelu_fast":
|
|
lambda: FastGELU(),
|
|
"gelu_new":
|
|
lambda: NewGELU(),
|
|
"gelu_pytorch_tanh":
|
|
lambda: nn.GELU(approximate="tanh"),
|
|
"relu":
|
|
lambda: nn.ReLU(),
|
|
"relu2":
|
|
lambda: ReLUSquaredActivation(),
|
|
"silu":
|
|
lambda: nn.SiLU(),
|
|
"quick_gelu":
|
|
lambda: QuickGELU(),
|
|
})
|
|
|
|
|
|
def get_act_fn(act_fn_name: str) -> nn.Module:
|
|
"""Get an activation function by name."""
|
|
act_fn_name = act_fn_name.lower()
|
|
if act_fn_name not in _ACTIVATION_REGISTRY:
|
|
raise ValueError(
|
|
f"Activation function {act_fn_name!r} is not supported.")
|
|
|
|
return _ACTIVATION_REGISTRY[act_fn_name]
|
|
|
|
|
|
_ACTIVATION_AND_MUL_REGISTRY = LazyDict({
|
|
"gelu": lambda: GeluAndMul(),
|
|
"silu": lambda: SiluAndMul(),
|
|
})
|
|
|
|
|
|
def get_act_and_mul_fn(act_fn_name: str) -> nn.Module:
|
|
"""Get an activation-and-mul (i.e. SiluAndMul) function by name."""
|
|
act_fn_name = act_fn_name.lower()
|
|
if act_fn_name not in _ACTIVATION_AND_MUL_REGISTRY:
|
|
raise ValueError(
|
|
f"Activation function {act_fn_name!r} is not supported.")
|
|
|
|
return _ACTIVATION_AND_MUL_REGISTRY[act_fn_name]
|