vllm/vllm/model_executor/layers/activation.py
cennn d907be7dc7
[misc] remove python function call for custom activation op (#11885)
Co-authored-by: youkaichao <youkaichao@gmail.com>
2025-01-10 17:18:25 +08:00

321 lines
11 KiB
Python

"""Custom activation functions."""
import math
from typing import Optional
import torch
import torch.nn as nn
import torch.nn.functional as F
from vllm.distributed import (divide, get_tensor_model_parallel_rank,
get_tensor_model_parallel_world_size)
from vllm.model_executor.custom_op import CustomOp
from vllm.model_executor.utils import set_weight_attrs
from vllm.platforms import current_platform
from vllm.utils import LazyDict
@CustomOp.register("fatrelu_and_mul")
class FatreluAndMul(CustomOp):
"""An activation function for FATReLU.
The function computes x -> FATReLU(x[:d]) * x[d:] where
d = x.shape[-1] // 2.
This is used in openbmb/MiniCPM-S-1B-sft.
Shapes:
x: (num_tokens, 2 * d) or (batch_size, seq_len, 2 * d)
return: (num_tokens, d) or (batch_size, seq_len, d)
"""
def __init__(self, threshold: float = 0.):
super().__init__()
self.threshold = threshold
if current_platform.is_cuda_alike() or current_platform.is_cpu():
self.op = torch.ops._C.fatrelu_and_mul
def forward_native(self, x: torch.Tensor) -> torch.Tensor:
d = x.shape[-1] // 2
x1 = x[..., :d]
x2 = x[..., d:]
x1 = F.threshold(x1, self.threshold, 0.0)
return x1 * x2
def forward_cuda(self, x: torch.Tensor) -> torch.Tensor:
d = x.shape[-1] // 2
output_shape = (x.shape[:-1] + (d, ))
out = torch.empty(output_shape, dtype=x.dtype, device=x.device)
self.op(out, x, self.threshold)
return out
@CustomOp.register("silu_and_mul")
class SiluAndMul(CustomOp):
"""An activation function for SwiGLU.
The function computes x -> silu(x[:d]) * x[d:] where d = x.shape[-1] // 2.
Shapes:
x: (num_tokens, 2 * d) or (batch_size, seq_len, 2 * d)
return: (num_tokens, d) or (batch_size, seq_len, d)
"""
def __init__(self):
super().__init__()
if current_platform.is_cuda_alike() or current_platform.is_cpu():
self.op = torch.ops._C.silu_and_mul
elif current_platform.is_xpu():
from vllm._ipex_ops import ipex_ops
self.op = ipex_ops.silu_and_mul
def forward_native(self, x: torch.Tensor) -> torch.Tensor:
"""PyTorch-native implementation equivalent to forward()."""
d = x.shape[-1] // 2
return F.silu(x[..., :d]) * x[..., d:]
def forward_cuda(self, x: torch.Tensor) -> torch.Tensor:
d = x.shape[-1] // 2
output_shape = (x.shape[:-1] + (d, ))
out = torch.empty(output_shape, dtype=x.dtype, device=x.device)
self.op(out, x)
return out
def forward_xpu(self, x: torch.Tensor) -> torch.Tensor:
d = x.shape[-1] // 2
output_shape = (x.shape[:-1] + (d, ))
out = torch.empty(output_shape, dtype=x.dtype, device=x.device)
self.op(out, x)
return out
@CustomOp.register("gelu_and_mul")
class GeluAndMul(CustomOp):
"""An activation function for GeGLU.
The function computes x -> GELU(x[:d]) * x[d:] where d = x.shape[-1] // 2.
Shapes:
x: (batch_size, seq_len, 2 * d) or (num_tokens, 2 * d)
return: (batch_size, seq_len, d) or (num_tokens, d)
"""
def __init__(self, approximate: str = "none"):
super().__init__()
self.approximate = approximate
if approximate not in ("none", "tanh"):
raise ValueError(f"Unknown approximate mode: {approximate}")
if current_platform.is_cuda_alike() or current_platform.is_cpu():
if approximate == "none":
self.op = torch.ops._C.gelu_and_mul
elif approximate == "tanh":
self.op = torch.ops._C.gelu_tanh_and_mul
elif current_platform.is_xpu():
from vllm._ipex_ops import ipex_ops
if approximate == "none":
self.op = ipex_ops.gelu_and_mul
else:
self.op = ipex_ops.gelu_tanh_and_mul
def forward_native(self, x: torch.Tensor) -> torch.Tensor:
"""PyTorch-native implementation equivalent to forward()."""
d = x.shape[-1] // 2
return F.gelu(x[..., :d], approximate=self.approximate) * x[..., d:]
def forward_cuda(self, x: torch.Tensor) -> torch.Tensor:
d = x.shape[-1] // 2
output_shape = (x.shape[:-1] + (d, ))
out = torch.empty(output_shape, dtype=x.dtype, device=x.device)
self.op(out, x)
return out
def forward_xpu(self, x: torch.Tensor) -> torch.Tensor:
d = x.shape[-1] // 2
output_shape = (x.shape[:-1] + (d, ))
out = torch.empty(output_shape, dtype=x.dtype, device=x.device)
self.op(out, x)
return out
def extra_repr(self) -> str:
return f'approximate={repr(self.approximate)}'
@CustomOp.register("gelu_new")
class NewGELU(CustomOp):
def __init__(self):
super().__init__()
if current_platform.is_cuda_alike() or current_platform.is_cpu():
self.op = torch.ops._C.gelu_new
elif current_platform.is_xpu():
from vllm._ipex_ops import ipex_ops
self.op = ipex_ops.gelu_new
def forward_native(self, x: torch.Tensor) -> torch.Tensor:
"""PyTorch-native implementation equivalent to forward()."""
c = math.sqrt(2.0 / math.pi)
return 0.5 * x * (1.0 + torch.tanh(c *
(x + 0.044715 * torch.pow(x, 3.0))))
def forward_cuda(self, x: torch.Tensor) -> torch.Tensor:
out = torch.empty_like(x)
self.op(out, x)
return out
def forward_xpu(self, x: torch.Tensor) -> torch.Tensor:
return self.op(x)
@CustomOp.register("gelu_fast")
class FastGELU(CustomOp):
def __init__(self):
super().__init__()
if current_platform.is_cuda_alike() or current_platform.is_cpu():
self.op = torch.ops._C.gelu_fast
elif current_platform.is_xpu():
from vllm._ipex_ops import ipex_ops
self.op = ipex_ops.gelu_fast
def forward_native(self, x: torch.Tensor) -> torch.Tensor:
"""PyTorch-native implementation equivalent to forward()."""
return 0.5 * x * (1.0 + torch.tanh(x * 0.7978845608 *
(1.0 + 0.044715 * x * x)))
def forward_cuda(self, x: torch.Tensor) -> torch.Tensor:
out = torch.empty_like(x)
self.op(out, x)
return out
def forward_xpu(self, x: torch.Tensor) -> torch.Tensor:
return self.op(x)
@CustomOp.register("quick_gelu")
class QuickGELU(CustomOp):
# https://github.com/huggingface/transformers/blob/main/src/transformers/activations.py#L90
def __init__(self):
super().__init__()
if current_platform.is_cuda_alike() or current_platform.is_cpu():
self.op = torch.ops._C.gelu_quick
elif current_platform.is_xpu():
from vllm._ipex_ops import ipex_ops
self.op = ipex_ops.gelu_quick
def forward_native(self, x: torch.Tensor) -> torch.Tensor:
"""PyTorch-native implementation equivalent to forward()."""
return x * torch.sigmoid(1.702 * x)
def forward_cuda(self, x: torch.Tensor) -> torch.Tensor:
out = torch.empty_like(x)
self.op(out, x)
return out
def forward_xpu(self, x: torch.Tensor) -> torch.Tensor:
out = torch.empty_like(x)
self.op(out, x)
return out
# TODO implement forward_xpu for QuickGELU
# def forward_xpu(self, x: torch.Tensor) -> torch.Tensor:
@CustomOp.register("relu2")
class ReLUSquaredActivation(CustomOp):
"""
Applies the relu^2 activation introduced in https://arxiv.org/abs/2109.08668v2
"""
def forward_native(self, x: torch.Tensor) -> torch.Tensor:
"""PyTorch-native implementation equivalent to forward()."""
return torch.square(F.relu(x))
def forward_cuda(self, x: torch.Tensor) -> torch.Tensor:
return self.forward_native(x)
class ScaledActivation(nn.Module):
"""An activation function with post-scale parameters.
This is used for some quantization methods like AWQ.
"""
def __init__(
self,
act_module: nn.Module,
intermediate_size: int,
input_is_parallel: bool = True,
params_dtype: Optional[torch.dtype] = None,
):
super().__init__()
self.act = act_module
self.input_is_parallel = input_is_parallel
if input_is_parallel:
tp_size = get_tensor_model_parallel_world_size()
intermediate_size_per_partition = divide(intermediate_size,
tp_size)
else:
intermediate_size_per_partition = intermediate_size
if params_dtype is None:
params_dtype = torch.get_default_dtype()
self.scales = nn.Parameter(
torch.empty(intermediate_size_per_partition, dtype=params_dtype))
set_weight_attrs(self.scales, {"weight_loader": self.weight_loader})
def forward(self, x: torch.Tensor) -> torch.Tensor:
return self.act(x) / self.scales
def weight_loader(self, param: nn.Parameter, loaded_weight: torch.Tensor):
param_data = param.data
if self.input_is_parallel:
tp_rank = get_tensor_model_parallel_rank()
shard_size = param_data.shape[0]
start_idx = tp_rank * shard_size
loaded_weight = loaded_weight.narrow(0, start_idx, shard_size)
assert param_data.shape == loaded_weight.shape
param_data.copy_(loaded_weight)
_ACTIVATION_REGISTRY = LazyDict({
"gelu":
lambda: nn.GELU(),
"gelu_fast":
lambda: FastGELU(),
"gelu_new":
lambda: NewGELU(),
"gelu_pytorch_tanh":
lambda: nn.GELU(approximate="tanh"),
"relu":
lambda: nn.ReLU(),
"relu2":
lambda: ReLUSquaredActivation(),
"silu":
lambda: nn.SiLU(),
"quick_gelu":
lambda: QuickGELU(),
})
def get_act_fn(act_fn_name: str) -> nn.Module:
"""Get an activation function by name."""
act_fn_name = act_fn_name.lower()
if act_fn_name not in _ACTIVATION_REGISTRY:
raise ValueError(
f"Activation function {act_fn_name!r} is not supported.")
return _ACTIVATION_REGISTRY[act_fn_name]
_ACTIVATION_AND_MUL_REGISTRY = LazyDict({
"gelu": lambda: GeluAndMul(),
"silu": lambda: SiluAndMul(),
})
def get_act_and_mul_fn(act_fn_name: str) -> nn.Module:
"""Get an activation-and-mul (i.e. SiluAndMul) function by name."""
act_fn_name = act_fn_name.lower()
if act_fn_name not in _ACTIVATION_AND_MUL_REGISTRY:
raise ValueError(
f"Activation function {act_fn_name!r} is not supported.")
return _ACTIVATION_AND_MUL_REGISTRY[act_fn_name]