vllm/vllm/multimodal/processing.py
Cyrus Leung d9fc8cd9da
[V1] Enable multi-input by default (#15799)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-04-12 08:52:39 +00:00

1735 lines
55 KiB
Python

# SPDX-License-Identifier: Apache-2.0
import re
import sys
from abc import ABC, abstractmethod
from collections import defaultdict
from collections.abc import (Callable, Generator, ItemsView, Iterable, Mapping,
Sequence)
from dataclasses import dataclass, field
from enum import Enum
from functools import lru_cache
from typing import (TYPE_CHECKING, Generic, NamedTuple, Optional, Protocol,
TypeVar, Union, cast)
import torch
from transformers import BatchFeature, PretrainedConfig, ProcessorMixin
from typing_extensions import assert_never
from vllm.inputs import InputProcessingContext
from vllm.jsontree import json_map_leaves, json_reduce_leaves
from vllm.logger import init_logger
from vllm.transformers_utils.tokenizer import (AnyTokenizer, decode_tokens,
encode_tokens)
from vllm.utils import GiB_bytes, LRUCache, flatten_2d_lists, full_groupby
from .hasher import MultiModalHasher
from .inputs import (MultiModalDataDict, MultiModalEncDecInputs,
MultiModalFieldConfig, MultiModalInputs, MultiModalKwargs,
MultiModalKwargsItem, NestedTensors, PlaceholderRange)
from .parse import (DictEmbeddingItems, EmbeddingItems, MultiModalDataItems,
MultiModalDataParser)
if TYPE_CHECKING:
from .profiling import BaseDummyInputsBuilder
logger = init_logger(__name__)
_S = TypeVar("_S", str, list[int])
PromptSeq = Union[str, list[int]]
"""A token sequence (list of token IDs) or text."""
@dataclass
class PromptIndex:
"""Resolves to an index in the prompt."""
get_match_index: Callable[[AnyTokenizer, PromptSeq], Optional[int]]
class PromptIndexTargets:
@staticmethod
def start() -> PromptIndex:
"""
Resolves to the start of the prompt (before the first token).
This results in a match even if the prompt is empty.
"""
return PromptIndex(lambda tok, prompt: 0)
@staticmethod
def prefix(seq: PromptSeq) -> PromptIndex:
"""
Resolves to a location in the prompt after the given prefix.
"""
def get_match_index(
tokenizer: AnyTokenizer,
prompt: PromptSeq,
) -> Optional[int]:
prefix = seq
if isinstance(prompt, str):
if not isinstance(prefix, str):
# Make both `str`
prefix = decode_tokens(tokenizer, prefix)
else:
if isinstance(prefix, str):
# Make both `list[int]`
prefix = encode_tokens(tokenizer,
prefix,
add_special_tokens=False)
match_idx = len(prefix)
return match_idx if prompt[:match_idx] == prefix else None
return PromptIndex(get_match_index)
@staticmethod
def end() -> PromptIndex:
"""
Resolves to the end of the prompt (after the last token).
This results in a match even if the prompt is empty.
"""
return PromptIndex(lambda tok, prompt: len(prompt))
PromptTarget = Union[PromptSeq, PromptIndex]
"""
The token sequence or text to update.
"""
@dataclass
class PromptUpdateDetails(Generic[_S]):
"""Details about the token sequence or text that are part of the update."""
full: _S
"""The full content."""
is_embed: Optional[Callable[["_BoundPromptSequence"], torch.Tensor]] = None
"""
Given :attr:`full`, return a boolean mask of shape `(len(full),)`
indicating which positions of `full` to assign embeddings to.
`None` (default) means to assign embeddings to all positions of `full`.
The embeddings are obtained by calling
:class:`SupportsMultiModal.get_multimodal_embeddings`.
"""
@staticmethod
def from_seq(seq: _S) -> "PromptUpdateDetails[_S]":
return PromptUpdateDetails(full=seq)
@staticmethod
def select_text(
seq: _S,
embed_text: str,
) -> "PromptUpdateDetails[_S]":
def is_embed(full: "_BoundPromptSequence") -> torch.Tensor:
embed_token_ids = encode_tokens(full.tokenizer, embed_text)
return torch.isin(
torch.tensor(full.token_ids),
torch.tensor(embed_token_ids),
)
return PromptUpdateDetails(full=seq, is_embed=is_embed)
@staticmethod
def select_token_id(
seq: _S,
embed_token_id: int,
) -> "PromptUpdateDetails[_S]":
return PromptUpdateDetails(
full=seq,
is_embed=lambda f: torch.tensor(f.token_ids) == embed_token_id,
)
PromptUpdateInfo = Union[PromptSeq, PromptUpdateDetails]
"""
The token sequence or text that are part of the update.
If only part of the content corresponds to feature placeholders, you can
use :class:`PromptUpdateDetails` to specify which part.
"""
PromptUpdateContent = Union[Callable[[int], PromptUpdateInfo],
PromptUpdateInfo]
"""
Given the index of the processed item within :attr:`modality`,
output the corresponding token sequence (or text).
For convenience, you can directly pass in the token sequence (or text)
instead of a function if it does not depend on the input.
"""
class UpdateMode(str, Enum):
INSERT = "insert"
REPLACE = "replace"
@dataclass
class PromptUpdate(ABC):
"""
Defines how to update a prompt with placeholder tokens.
"""
modality: str
"""The modality for which the update is made."""
target: PromptTarget
"""The token sequence (or text) to update."""
@property
@abstractmethod
def content(self) -> PromptUpdateContent:
"""The placeholder tokens that are part of the update."""
raise NotImplementedError
@property
@abstractmethod
def mode(self) -> UpdateMode:
"""Defines how to update the prompt."""
raise NotImplementedError
def bind(self, tokenizer: AnyTokenizer) -> "BoundPromptUpdate":
return BoundPromptUpdate(
_origin=self,
tokenizer=tokenizer,
)
@dataclass
class PromptInsertion(PromptUpdate):
"""
Defines how to insert placeholder tokens into a prompt.
Example:
For each image, insert a number of ``<image>`` feature placeholders
equal to the feature size of the vision encoder after the ``<s>`` token:
.. code-block:: python
PromptInsertion(
modality="image",
target="<s>",
insertion="<image>" * image_feature_size,
)
Insert these tokens at the start of the prompt:
.. code-block:: python
PromptInsertion(
modality="image",
target=PromptIndexTargets.start(),
insertion="<image>" * image_feature_size,
)
Insert these tokens after a prefix ``Images:``:
.. code-block:: python
PromptInsertion(
modality="image",
target=PromptIndexTargets.prefix("Images:"),
insertion="<image>" * image_feature_size,
)
Insert these tokens at the end of the prompt:
.. code-block:: python
PromptInsertion(
modality="image",
target=PromptIndexTargets.end(),
insertion="<image>" * image_feature_size,
)
"""
insertion: PromptUpdateContent = field(repr=False)
"""
Given the index of the processed item within :attr:`modality`,
output the token sequence (or text) to insert right after :attr:`target`.
For convenience, you can directly pass in the token sequence (or text)
instead of a function if it does not depend on the input.
"""
@property
def content(self) -> PromptUpdateContent:
return self.insertion
@property
def mode(self) -> UpdateMode:
return UpdateMode.INSERT
@dataclass
class PromptReplacement(PromptUpdate):
"""
Defines how to replace portions of an input prompt with placeholder tokens.
Example:
For each image, replace one ``<image>`` input placeholder in the prompt
with a number of ``<image>`` feature placeholders
equal to the feature size of the vision encoder:
.. code-block:: python
PromptReplacement(
modality="image",
target="<image>",
replacement="<image>" * image_feature_size,
)
As above, but further pad the feature placeholders with ``<image_bos>``
and `<image_eos>``, which are not supposed to be passed to the vision
encoder:
.. code-block:: python
PromptReplacement(
modality="image",
target="<image>",
replacement=PromptUpdateDetails(
full="".join([
"<image_bos>",
"<image>" * image_feature_size,
"<image_eos>",
]),
features="<image>" * image_feature_size,
),
)
To avoid unnecessary tokenization during prompt replacement,
we recommended passing token sequences instead of text:
.. code-block:: python
PromptReplacement(
modality="image",
target=[image_token_id],
replacement=PromptUpdateDetails(
full=([image_bos_id] + [image_token_id] * image_feature_size
+ [image_eos_id]),
features=[image_token_id] * image_feature_size,
),
)
"""
replacement: PromptUpdateContent = field(repr=False)
"""
Given the index of the processed item within :attr:`modality`,
output the token sequence (or text) to replace :attr:`target`.
For convenience, you can directly pass in the token sequence (or text)
instead of a function if it does not depend on the input.
"""
@property
def content(self) -> PromptUpdateContent:
return self.replacement
@property
def mode(self) -> UpdateMode:
return UpdateMode.REPLACE
@lru_cache(maxsize=2048)
def _cached_encode(
tokenizer: AnyTokenizer,
text: str,
*,
add_special_tokens: Optional[bool] = None,
) -> list[int]:
return encode_tokens(tokenizer,
text,
add_special_tokens=add_special_tokens)
@lru_cache(maxsize=2048)
def _cached_decode(
tokenizer: AnyTokenizer,
token_ids: tuple[int, ...],
*,
skip_special_tokens: Optional[bool] = None,
) -> str:
return decode_tokens(tokenizer,
list(token_ids),
skip_special_tokens=skip_special_tokens)
class _HasModalityAttr(Protocol):
modality: str
class _HasModalityProp(Protocol):
@property
def modality(self) -> str:
...
_M = TypeVar("_M", bound=Union[_HasModalityAttr, _HasModalityProp])
def full_groupby_modality(values: Iterable[_M]) -> ItemsView[str, list[_M]]:
"""Convenience function to apply :func:`full_groupby` based on modality."""
return full_groupby(values, key=lambda x: x.modality)
@dataclass
class _BoundPromptSequence:
"""
A :data:`_PromptSeq` bound to a tokenizer to automatically
convert between token sequence and text representations.
"""
tokenizer: AnyTokenizer = field(repr=False)
_text: Optional[str]
_token_ids: Optional[list[int]]
@staticmethod
def from_seq(
tokenizer: AnyTokenizer,
seq: PromptSeq,
) -> "_BoundPromptSequence":
return _BoundPromptSequence(
tokenizer=tokenizer,
_text=seq if isinstance(seq, str) else None,
_token_ids=seq if isinstance(seq, list) else None,
)
def __post_init__(self) -> None:
if self._text is None and self._token_ids is None:
raise ValueError("At least one of 'text' and 'token_ids' must be "
"specified")
@property
def text(self) -> str:
if self._text is None:
assert self._token_ids is not None
self._text = _cached_decode(self.tokenizer, tuple(self._token_ids))
return self._text
@property
def token_ids(self) -> list[int]:
if self._token_ids is None:
assert self._text is not None
self._token_ids = _cached_encode(self.tokenizer,
self._text,
add_special_tokens=False)
return self._token_ids
@dataclass
class _BoundPromptContent:
full: _BoundPromptSequence
is_embed: Optional[Callable[["_BoundPromptSequence"], torch.Tensor]]
@dataclass
class BoundPromptUpdate:
"""
A :class:`PromptUpdate` bound to a tokenizer to automatically convert
:attr:`target` and the result of :meth:`get_content` between
token sequence and text representations.
"""
_origin: PromptUpdate
tokenizer: AnyTokenizer = field(repr=False)
def __post_init__(self) -> None:
self._content_cache = dict[int, _BoundPromptContent]()
@property
def modality(self) -> str:
return self._origin.modality
@property
def target(self) -> Union[_BoundPromptSequence, PromptIndex]:
"""The token sequence (or text) to update."""
target = self._origin.target
if isinstance(target, PromptIndex):
return target
return _BoundPromptSequence.from_seq(self.tokenizer, target)
@property
def content(self) -> PromptUpdateContent:
"""The placeholder tokens that are part of the update."""
return self._origin.content
@property
def mode(self) -> UpdateMode:
"""Defines how to update the prompt."""
return self._origin.mode
def get_content(self, item_idx: int) -> _BoundPromptContent:
"""
Given the index of the processed item within :attr:`modality`,
output the token sequence (or text) to update.
"""
content = self.content
if callable(content):
cache_key = item_idx
if cache_key in self._content_cache:
return self._content_cache[cache_key]
content = content(item_idx)
else:
cache_key = None
if not isinstance(content, PromptUpdateDetails):
content = PromptUpdateDetails.from_seq(content)
bound_full = _BoundPromptSequence.from_seq(self.tokenizer,
content.full)
bound_content = _BoundPromptContent(full=bound_full,
is_embed=content.is_embed)
if cache_key is not None:
self._content_cache[cache_key] = bound_content
return bound_content
class _TokenMatch(NamedTuple):
start_idx: int
end_idx: int
def iter_token_matches(
token_ids: list[int],
match_ids: list[int],
) -> Generator[_TokenMatch]:
"""
Yield each occurrence of :code:`match_ids` in :code:`token_ids`.
Note that empty matches are ignored.
"""
prompt_len = len(token_ids)
match_len = len(match_ids)
if match_len == 0:
return
start_idx = 0
while start_idx < prompt_len - match_len + 1:
end_idx = start_idx + match_len
if token_ids[start_idx:end_idx] == match_ids:
yield _TokenMatch(start_idx=start_idx, end_idx=end_idx)
# Exclude overlapping matches
start_idx = end_idx
else:
start_idx += 1
def replace_token_matches(
token_ids: list[int],
match_ids: list[int],
new_ids: list[int],
) -> list[int]:
"""
Replace each occurrence of :code:`match_ids` in :code:`token_ids`
with :code:`new_ids`.
Note that empty matches are ignored.
"""
out_seqs = list[list[int]]()
prev_end_idx = 0
for match in iter_token_matches(token_ids, match_ids):
start_idx = match.start_idx
end_idx = match.end_idx
out_seqs.append(token_ids[prev_end_idx:start_idx])
out_seqs.append(new_ids)
prev_end_idx = end_idx
out_seqs.append(token_ids[prev_end_idx:])
return flatten_2d_lists(out_seqs)
@dataclass(repr=False)
class PromptTargetMatch(ABC):
_origin: BoundPromptUpdate
@property
def modality(self) -> str:
return self._origin.modality
@property
@abstractmethod
def start_idx(self) -> int:
raise NotImplementedError
@property
@abstractmethod
def end_idx(self) -> int:
raise NotImplementedError
def __repr__(self) -> str:
return (f"{type(self).__name__}(modality={self.modality!r}, "
f"start_idx={self.start_idx!r}, end_idx={self.end_idx!r})")
@dataclass(repr=False)
class _PromptTargetIndexMatch(PromptTargetMatch):
match_idx: int
@property
def start_idx(self) -> int:
return self.match_idx
@property
def end_idx(self) -> int:
return self.match_idx
@dataclass(repr=False)
class _PromptTargetTokenMatch(PromptTargetMatch):
match: _TokenMatch
@property
def start_idx(self) -> int:
return self.match.start_idx
@property
def end_idx(self) -> int:
return self.match.end_idx
@dataclass(repr=False)
class _PromptTargetTextMatch(PromptTargetMatch):
match: re.Match[str]
@property
def start_idx(self) -> int:
return self.match.start()
@property
def end_idx(self) -> int:
return self.match.end()
@dataclass
class PlaceholderFeaturesInfo:
modality: str
item_idx: int
start_idx: int
tokens: list[int]
is_embed: Optional[torch.Tensor]
@property
def length(self) -> int:
return len(self.tokens)
def to_range(self) -> PlaceholderRange:
# TODO: Is it worth it to optimize this by stripping the
# leading and ending positions where `is_embed=False`?
return PlaceholderRange(
offset=self.start_idx,
length=self.length,
is_embed=self.is_embed,
)
def find_token_matches(
prompt: list[int],
prompt_updates: Sequence[BoundPromptUpdate],
) -> Sequence[PromptTargetMatch]:
"""Return each target of :code:`prompt_updates` found in :code:`prompt`."""
def get_matches(update: BoundPromptUpdate):
target = update.target
if isinstance(target, PromptIndex):
match_idx = target.get_match_index(update.tokenizer, prompt)
if match_idx is None:
return []
return [_PromptTargetIndexMatch(update, match_idx)]
return [
_PromptTargetTokenMatch(update, match)
for match in iter_token_matches(prompt, target.token_ids)
]
return [
match for update in prompt_updates for match in get_matches(update)
]
def find_text_matches(
prompt: str,
prompt_updates: Sequence[BoundPromptUpdate],
) -> Sequence[PromptTargetMatch]:
"""Return each target of :code:`prompt_updates` found in :code:`prompt`."""
def get_matches(update: BoundPromptUpdate):
target = update.target
if isinstance(target, PromptIndex):
match_idx = target.get_match_index(update.tokenizer, prompt)
if match_idx is None:
return []
return [_PromptTargetIndexMatch(update, match_idx)]
return [
_PromptTargetTextMatch(update, match)
for match in re.finditer(re.escape(target.text), prompt)
]
return [
match for update in prompt_updates for match in get_matches(update)
]
def _resolve_matches(
prompt: PromptSeq,
mm_matches: Mapping[str, Sequence[PromptTargetMatch]],
) -> list[PromptTargetMatch]:
"""
Resolve :code:`mm_matches` to ensure that there are no overlapping matches,
and sort them such that earlier matches take priority over later ones.
"""
matches = [m for matches in mm_matches.values() for m in matches]
seen_matches: list[Optional[PromptTargetMatch]] = [None] * len(prompt)
for match in matches:
for idx in range(match.start_idx, match.end_idx):
if seen_matches[idx] is not None:
raise ValueError("Found overlapping matches "
f"({seen_matches[idx]} and {match}) "
f"at index={idx} of prompt={prompt}")
seen_matches[idx] = match
return sorted(matches, key=lambda x: x.start_idx)
def _apply_matches(
prompt: _S,
mm_matches: Mapping[str, Sequence[PromptTargetMatch]],
mm_item_counts: Mapping[str, int],
) -> list[_S]:
"""Apply the updates in :code:`mm_matches` to :code:`prompt`."""
out_seqs = list[Union[str, list[int]]]()
prev_end_idx = 0
next_idx_by_modality = defaultdict[str, int](lambda: 0)
for match in _resolve_matches(prompt, mm_matches):
modality = match.modality
item_start_idx = next_idx_by_modality[modality]
max_item_count = mm_item_counts.get(modality, 0)
if item_start_idx >= max_item_count:
continue
start_idx = match.start_idx
end_idx = match.end_idx
origin = match._origin
mode = origin.mode
if mode == UpdateMode.INSERT:
out_seqs.append(prompt[prev_end_idx:end_idx])
num_inserts = max_item_count
elif mode == UpdateMode.REPLACE:
out_seqs.append(prompt[prev_end_idx:start_idx])
num_inserts = max_item_count if start_idx == end_idx else 1
else:
assert_never(mode)
item_end_idx = min(item_start_idx + num_inserts, max_item_count)
for item_idx in range(item_start_idx, item_end_idx):
content = origin.get_content(item_idx)
insert_seq = (content.full.text if isinstance(prompt, str) else
content.full.token_ids)
out_seqs.append(insert_seq)
prev_end_idx = end_idx
next_idx_by_modality[modality] += item_end_idx - item_start_idx
out_seqs.append(prompt[prev_end_idx:])
return cast(list[_S], out_seqs)
def apply_token_matches(
prompt: list[int],
mm_matches: Mapping[str, Sequence[PromptTargetMatch]],
mm_item_counts: Mapping[str, int],
) -> list[int]:
"""Apply the updates in :code:`mm_matches` to :code:`prompt`."""
if not mm_matches:
return prompt
token_id_seqs = _apply_matches(prompt, mm_matches, mm_item_counts)
return flatten_2d_lists(token_id_seqs)
def apply_text_matches(
prompt: str,
mm_matches: Mapping[str, Sequence[PromptTargetMatch]],
mm_item_counts: Mapping[str, int],
) -> str:
"""Apply the updates in :code:`mm_matches` to :code:`prompt`."""
if not mm_matches:
return prompt
texts = _apply_matches(prompt, mm_matches, mm_item_counts)
return "".join(texts)
def _iter_placeholders(
mm_prompt_updates: Mapping[str, Sequence[BoundPromptUpdate]],
prompt: list[int],
mm_item_counts: Mapping[str, int],
) -> Iterable[PlaceholderFeaturesInfo]:
"""
Yield each set of placeholder tokens found in :code:`prompt`.
Matches are exclusive even when multiple modalities share
the same placeholder tokens. In that case, the modality that
appears earlier in `mm_prompt_updates` takes priority.
Note that empty matches are ignored.
"""
prompt_len = len(prompt)
item_idx_by_modality = defaultdict[str, int](lambda: 0)
start_idx = 0
while start_idx < prompt_len:
found = False
for modality, modality_updates in mm_prompt_updates.items():
item_idx = item_idx_by_modality[modality]
if item_idx >= mm_item_counts.get(modality, 0):
continue
for update_info in modality_updates:
content = update_info.get_content(item_idx)
content_tokens_full = content.full.token_ids
content_len_full = len(content_tokens_full)
end_idx_full = start_idx + content_len_full
if content_len_full == 0 or end_idx_full > prompt_len:
continue
if prompt[start_idx:end_idx_full] == content_tokens_full:
content_is_embed = content.is_embed
if content_is_embed is not None:
content_is_embed = content_is_embed(content.full)
yield PlaceholderFeaturesInfo(
modality=modality,
item_idx=item_idx,
start_idx=start_idx,
tokens=content_tokens_full,
is_embed=content_is_embed,
)
# Exclude overlapping matches
start_idx = end_idx_full
item_idx_by_modality[modality] += 1
found = True
break
if found:
break # Go back to the outer while loop
if not found:
start_idx += 1
def find_mm_placeholders(
mm_prompt_updates: Mapping[str, Sequence[BoundPromptUpdate]],
prompt: list[int],
mm_item_counts: Mapping[str, int],
) -> Mapping[str, list[PlaceholderFeaturesInfo]]:
it = _iter_placeholders(mm_prompt_updates, prompt, mm_item_counts)
return dict(full_groupby_modality(it))
_V = TypeVar("_V", bound="Union[MultiModalKwargs, MultiModalKwargsItem]")
class ProcessingCache:
@staticmethod
def get_lru_cache(
capacity_gb: float,
value_type: type[_V],
*,
debug: bool = False,
) -> LRUCache[str, _V]:
def get_leaf_size(leaf: object) -> int:
# MultiModalKwargs is not a subclass of dict
if isinstance(leaf, MultiModalKwargs):
return get_item_size(leaf.data)
# MultiModalKwargsItem is not a subclass of dict
if isinstance(leaf, MultiModalKwargsItem):
leaf_data = {k: v.data for k, v in leaf.items()}
return get_item_size(leaf_data)
# sys.getsizeof doesn't work for tensors
if isinstance(leaf, torch.Tensor):
return leaf.nbytes
return sys.getsizeof(leaf)
def get_item_size(
value: Union[MultiModalKwargs, MultiModalKwargsItem,
Mapping[str, NestedTensors]]
) -> int:
size = json_reduce_leaves(
lambda a, b: a + b,
json_map_leaves(get_leaf_size, value),
)
if debug:
logger.debug("Calculated size of %s to be %.2f GiB",
type(value), size / GiB_bytes)
return size
return LRUCache(GiB_bytes * capacity_gb, getsizeof=get_item_size)
def __init__(
self,
capacity_gb: float,
*,
debug_cache_hit_ratio_steps: Optional[int] = None,
) -> None:
super().__init__()
self.debug_cache_hit_ratio_steps = debug_cache_hit_ratio_steps
self.debug_cache_hits = 0
self.debug_cache_total = 0
self._cache = self.get_lru_cache(
capacity_gb,
MultiModalKwargsItem,
debug=bool(debug_cache_hit_ratio_steps),
)
def _maybe_log_cache_stats(self) -> None:
steps = self.debug_cache_hit_ratio_steps
if not steps:
return
total = self.debug_cache_total
if total > 0 and total % steps == 0:
logger.debug("ProcessingCache: hit_ratio = %.2f",
self.debug_cache_hits / total)
logger.debug("ProcessingCache: size = %.2f / %.2f GiB",
self._cache.currsize / GiB_bytes,
self._cache.maxsize / GiB_bytes)
def get(
self,
model_id: str,
modality: str,
input_item: object,
input_kwargs: Mapping[str, object],
) -> Optional[MultiModalKwargsItem]:
"""
Get a processed multi-modal item from the cache
according to its dependencies, including:
- The model ID
- The modality of the item
- The original data item passed to the HF processor
- The configuration options of the HF processor
"""
self._maybe_log_cache_stats()
cache_key = MultiModalHasher.hash_kwargs(model_id=model_id,
**{modality: input_item},
**input_kwargs)
if self.debug_cache_hit_ratio_steps:
if cache_key in self._cache:
self.debug_cache_hits += 1
self.debug_cache_total += 1
return self._cache.get(cache_key)
def put(
self,
model_id: str,
modality: str,
input_item: object,
input_kwargs: Mapping[str, object],
output_kwargs: MultiModalKwargsItem,
) -> None:
"""
Put a processed multi-modal item into the cache
according to its dependencies (see :meth:`get`).
"""
cache_key = MultiModalHasher.hash_kwargs(model_id=model_id,
**{modality: input_item},
**input_kwargs)
self._cache[cache_key] = output_kwargs
class BaseProcessingInfo:
"""Base class to provide the information necessary for data processing."""
def __init__(self, ctx: InputProcessingContext) -> None:
super().__init__()
self.ctx = ctx
@property
def model_id(self) -> str:
return self.ctx.model_config.model
def get_tokenizer(self) -> AnyTokenizer:
return self.ctx.tokenizer
def get_hf_config(self) -> PretrainedConfig:
return self.ctx.get_hf_config()
def get_hf_processor(self, **kwargs: object) -> ProcessorMixin:
"""
Subclasses can override this method to handle
specific kwargs from model config or user inputs.
"""
return self.ctx.get_hf_processor(**kwargs)
@abstractmethod
def get_supported_mm_limits(self) -> Mapping[str, Optional[int]]:
"""
Return the maximum supported number of items for each modality.
A value of `None` means unlimited number of items.
Omitting a modality from the returned dictionary means that
it is not supported at all.
"""
raise NotImplementedError
def get_allowed_mm_limits(self) -> Mapping[str, int]:
"""Return the maximum allowed number of items for each modality."""
supported_mm_limits = self.get_supported_mm_limits()
mm_config = self.ctx.get_mm_config()
allowed_limits = dict[str, int]()
for modality, supported_limit in supported_mm_limits.items():
user_limit = mm_config.get_limit_per_prompt(modality)
allowed_limits[modality] = (user_limit if supported_limit is None
else min(user_limit, supported_limit))
return allowed_limits
_I = TypeVar("_I", bound=BaseProcessingInfo)
class BaseMultiModalProcessor(ABC, Generic[_I]):
"""
Abstract base class to process multi-modal inputs to be used in vLLM.
Not to be confused with :class:`transformers.ProcessorMixin`.
"""
def __init__(self,
info: _I,
dummy_inputs: "BaseDummyInputsBuilder[_I]",
*,
cache: Optional[ProcessingCache] = None,
enable_sanity_checks: bool = True) -> None:
super().__init__()
self.info = info
self.dummy_inputs = dummy_inputs
self.cache = cache
self.enable_sanity_checks = enable_sanity_checks
self.data_parser = self._get_data_parser()
def __call__(
self,
prompt: str,
mm_data: MultiModalDataDict,
hf_processor_mm_kwargs: Mapping[str, object],
) -> MultiModalInputs:
return self.apply(prompt, mm_data, hf_processor_mm_kwargs)
def _get_data_parser(self) -> MultiModalDataParser:
"""
Construct a parser to preprocess multi-modal data items
before passing them to :meth:`_get_hf_mm_data`.
You can support additional modalities by creating a subclass
of :class:`MultiModalDataParser` that has additional subparsers.
"""
return MultiModalDataParser()
def _to_mm_items(
self,
mm_data: MultiModalDataDict,
) -> MultiModalDataItems:
"""
Normalize :class:`MultiModalDataDict` to :class:`MultiModalDataItems`
before passing them to :meth:`_get_hf_mm_data`.
"""
mm_items = self.data_parser.parse_mm_data(mm_data)
supported_mm_limits = self.info.get_supported_mm_limits()
allowed_mm_limits = self.info.get_allowed_mm_limits()
for modality, items in mm_items.items():
supported_limit = supported_mm_limits.get(modality, 0)
allowed_limit = allowed_mm_limits.get(modality, 0)
num_items = len(items)
if supported_limit is not None and num_items > supported_limit:
raise ValueError(
f"The model only supports at most {supported_limit} "
f"{modality} items, but you passed {num_items} "
f"{modality} items in the same prompt.")
if num_items > allowed_limit:
raise ValueError(
f"You set or defaulted to {modality}={allowed_limit} "
f"in --limit-mm-per-prompt`, but passed {num_items} "
f"{modality} items in the same prompt.")
return mm_items
@abstractmethod
def _get_mm_fields_config(
self,
hf_inputs: BatchFeature,
hf_processor_mm_kwargs: Mapping[str, object],
) -> Mapping[str, MultiModalFieldConfig]:
"""Given the HF-processed data, output the metadata of each field."""
raise NotImplementedError
@abstractmethod
def _get_prompt_updates(
self,
mm_items: MultiModalDataItems,
hf_processor_mm_kwargs: Mapping[str, object],
out_mm_kwargs: MultiModalKwargs,
) -> Sequence[PromptUpdate]:
"""
Given the original multi-modal items for this modality
and HF-processed data, output the updates to perform.
The information returned by this method is used to update token inputs
which bypass the HF processor. It is also used to update the output of
HF processor if the HF process does not apply prompt updates to text
inputs.
Moreover, this information is critical to determine the token positions
in order to construct :class:`~vllm-multimodal.input.PlaceholderRange`
for each multi-modal item.
"""
raise NotImplementedError
def _find_mm_placeholders(
self,
mm_prompt_updates: Mapping[str, Sequence[BoundPromptUpdate]],
new_token_ids: list[int],
mm_item_counts: Mapping[str, int],
) -> Mapping[str, list[PlaceholderFeaturesInfo]]:
return find_mm_placeholders(mm_prompt_updates, new_token_ids,
mm_item_counts)
def _get_hf_mm_data(
self,
mm_items: MultiModalDataItems,
) -> tuple[Mapping[str, object], Mapping[str, object]]:
processor_data = dict[str, object]()
passthrough_data = dict[str, object]()
for items in mm_items.values():
processor_data.update(items.get_processor_data())
passthrough_data.update(items.get_passthrough_data())
return processor_data, passthrough_data
def _call_hf_processor(
self,
prompt: str,
# Not to be confused with `mm_data` in `self.apply`.
# This refers to the data to be passed to HF processor.
mm_data: Mapping[str, object],
mm_kwargs: Mapping[str, object],
) -> BatchFeature:
"""
Call the HF processor on the prompt text and
associated multi-modal data.
"""
return self.info.ctx.call_hf_processor(
self.info.get_hf_processor(**mm_kwargs),
dict(text=prompt, **mm_data),
mm_kwargs,
)
def _hf_processor_applies_updates(
self,
prompt_text: str,
mm_items: MultiModalDataItems,
hf_processor_mm_kwargs: Mapping[str, object],
) -> bool:
"""
Return whether the HF processor applies prompt updates.
For most HF processors, this should be :code:`True` when multi-modal
data items are passed, but :code:`False` when multi-modal embeddings
are passed.
"""
return not any(
isinstance(items, (EmbeddingItems, DictEmbeddingItems))
for items in mm_items.values())
def _apply_hf_processor_text_mm(
self,
prompt_text: str,
mm_items: MultiModalDataItems,
hf_processor_mm_kwargs: Mapping[str, object],
) -> tuple[list[int], MultiModalKwargs, bool]:
"""
Apply the HF processor on the prompt text and multi-modal data
together.
In addition, return whether prompt updates have been applied.
"""
processor_data, passthrough_data = self._get_hf_mm_data(mm_items)
processed_data = self._call_hf_processor(
prompt=prompt_text,
mm_data=processor_data,
mm_kwargs=hf_processor_mm_kwargs,
)
processed_data.update(passthrough_data)
prompt_ids, = processed_data.pop("input_ids").tolist()
mm_kwargs = MultiModalKwargs.from_hf_inputs(
processed_data,
self._get_mm_fields_config(processed_data, hf_processor_mm_kwargs),
)
is_update_applied = self._hf_processor_applies_updates(
prompt_text=prompt_text,
mm_items=mm_items,
hf_processor_mm_kwargs=hf_processor_mm_kwargs,
)
return prompt_ids, mm_kwargs, is_update_applied
def _apply_hf_processor_text_only(self, prompt_text: str) -> list[int]:
"""
Apply the HF processor on the prompt text only.
Since HF processor requires that text and multi-modal items
correspond to each other, we create dummy multi-modal items
to go along with the text.
"""
prompt_ids, _, _ = self._apply_hf_processor_text_mm(
prompt_text=prompt_text,
mm_items=MultiModalDataItems({}),
hf_processor_mm_kwargs={},
)
return prompt_ids
def _apply_hf_processor_tokens_only(
self,
prompt_tokens: list[int],
) -> list[int]:
"""
Apply the HF processor on the prompt tokens only.
Most HF processors accept prompt text but not prompt tokens.
If the HF processor adds or removes tokens that are not related to
multi-modal data, you should override this method so it is consistent
with the output of :meth:`_apply_hf_processor_text_only` on the
corresponding text.
"""
return prompt_tokens
def _apply_hf_processor_mm_only(
self,
mm_items: MultiModalDataItems,
hf_processor_mm_kwargs: Mapping[str, object],
) -> MultiModalKwargs:
"""
Apply the HF processor on the multi-modal data only.
Since HF processor requires that text and multi-modal items
correspond to each other, we generate dummy text using
:class:`DummyInputsBuilder` to go along with the multi-modal data.
"""
mm_counts = mm_items.get_all_counts()
_, mm_kwargs, _ = self._apply_hf_processor_text_mm(
prompt_text=self.dummy_inputs.get_dummy_text(mm_counts),
mm_items=mm_items,
hf_processor_mm_kwargs=hf_processor_mm_kwargs,
)
return mm_kwargs
def _apply_hf_processor_main(
self,
prompt: Union[str, list[int]],
mm_items: MultiModalDataItems,
hf_processor_mm_kwargs: Mapping[str, object],
*,
enable_hf_prompt_update: bool,
) -> tuple[list[int], MultiModalKwargs, bool]:
"""
Apply the HF processor on the prompt text and multi-modal data.
In addition, return whether prompt updates have been applied
(for most HF processors, this should be :code:`True`).
Note:
If :code:`enable_hf_prompt_update=False`, we use HF processor
to perform prompt updates if available; HF processor requires
that the prompt corresponds to multi-modal items.
"""
if isinstance(prompt, str):
if enable_hf_prompt_update:
return self._apply_hf_processor_text_mm(
prompt_text=prompt,
mm_items=mm_items,
hf_processor_mm_kwargs=hf_processor_mm_kwargs,
)
prompt_ids = self._apply_hf_processor_text_only(prompt)
else:
prompt_ids = self._apply_hf_processor_tokens_only(prompt)
mm_kwargs = self._apply_hf_processor_mm_only(
mm_items=mm_items,
hf_processor_mm_kwargs=hf_processor_mm_kwargs,
)
return prompt_ids, mm_kwargs, False
def _cached_apply_hf_processor(
self,
prompt: Union[str, list[int]],
mm_data_items: MultiModalDataItems,
hf_processor_mm_kwargs: Mapping[str, object],
) -> tuple[list[int], MultiModalKwargs, bool]:
"""
Apply the HF processor on the full prompt text,
caching the results and reusing cached results.
"""
cache = self.cache
model_id = self.info.model_id
_, passthrough_data = self._get_hf_mm_data(mm_data_items)
if cache is None or passthrough_data:
return self._apply_hf_processor_main(
prompt=prompt,
mm_items=mm_data_items,
hf_processor_mm_kwargs=hf_processor_mm_kwargs,
enable_hf_prompt_update=True,
)
mm_maybe_cached_kw_items = {
modality: [
cache.get(model_id, modality, item, hf_processor_mm_kwargs)
for item in items
]
for modality, items in mm_data_items.items()
}
mm_missing_idxs = {
modality:
[idx for idx, item in enumerate(kw_items) if item is None]
for modality, kw_items in mm_maybe_cached_kw_items.items()
}
mm_missing_data = {
modality: [mm_data_items[modality][idx] for idx in idxs]
for modality, idxs in mm_missing_idxs.items()
}
mm_missing_data_items = self._to_mm_items(mm_missing_data)
# NOTE: `prompt` does not correspond to `mm_missing_data_items`,
# so we can't apply prompt updates until the new multimodal
# items are combined with the cached multimodal items
(
prompt_ids,
mm_missing_kwargs,
is_update_applied,
) = self._apply_hf_processor_main(
prompt=prompt,
mm_items=mm_missing_data_items,
hf_processor_mm_kwargs=hf_processor_mm_kwargs,
enable_hf_prompt_update=False,
)
mm_missing_next_idx = {
modality: 0
for modality in mm_missing_data_items
}
merged_kw_items = list[MultiModalKwargsItem]()
for modality, kw_items in mm_maybe_cached_kw_items.items():
for idx, kw_item in enumerate(kw_items):
if kw_item is None:
kw_item = mm_missing_kwargs.get_item(
modality,
mm_missing_next_idx[modality],
)
cache.put(
model_id,
modality,
mm_data_items[modality][idx],
hf_processor_mm_kwargs,
kw_item,
)
mm_missing_next_idx[modality] += 1
merged_kw_items.append(kw_item)
if self.enable_sanity_checks:
mm_missing_counts = mm_missing_data_items.get_all_counts()
assert all(
item_count == mm_missing_counts[modality]
for modality, item_count in mm_missing_next_idx.items()), dict(
mm_missing_next_idx=mm_missing_next_idx,
mm_missing_counts=mm_missing_counts)
mm_kwargs = MultiModalKwargs.from_items(merged_kw_items)
return prompt_ids, mm_kwargs, is_update_applied
def _bind_and_group_updates(
self,
prompt_updates: Sequence[PromptUpdate],
) -> dict[str, Sequence[BoundPromptUpdate]]:
tokenizer = self.info.get_tokenizer()
it = (update.bind(tokenizer) for update in prompt_updates)
return dict(full_groupby_modality(it))
def _apply_token_matches(
self,
prompt: list[int],
mm_matches: Mapping[str, Sequence[PromptTargetMatch]],
mm_item_counts: Mapping[str, int],
) -> list[int]:
return apply_token_matches(prompt, mm_matches, mm_item_counts)
def _apply_text_matches(
self,
prompt: str,
mm_matches: Mapping[str, Sequence[PromptTargetMatch]],
mm_item_counts: Mapping[str, int],
) -> str:
return apply_text_matches(prompt, mm_matches, mm_item_counts)
def _apply_prompt_updates(
self,
token_ids: list[int],
mm_prompt_updates: Mapping[str, Sequence[BoundPromptUpdate]],
mm_item_counts: Mapping[str, int],
) -> tuple[list[int], str, Mapping[str, list[PlaceholderFeaturesInfo]]]:
tokenizer = self.info.get_tokenizer()
mm_token_matches = {
modality: find_token_matches(token_ids, updates)
for modality, updates in mm_prompt_updates.items()
}
mm_match_counts = {
modality: len(matches)
for modality, matches in mm_token_matches.items()
}
# If the search text does not represent a special token,
# it may have different token IDs in the prompt, because
# the tokens may go across the boundaries of the search text.
# ----
# e.g. when searching for "foo" in "food", if "food" itself makes
# up a token, then the token ID of "foo" will not appear at all
# ----
# Since it is inefficient to search for all possible tokenizations
# of the search text in the prompt, we instead perform string-based
# updates on the decoded token IDs, then encode them back.
if all(
mm_match_counts.get(modality, 0) >= item_count
for modality, item_count in mm_item_counts.items()
): # yapf: disable
token_ids = self._apply_token_matches(
token_ids,
mm_token_matches,
mm_item_counts,
)
text = decode_tokens(tokenizer, token_ids)
matched_updates = {
modality: [match._origin for match in token_matches]
for modality, token_matches in mm_token_matches.items()
}
else:
text = decode_tokens(tokenizer, token_ids)
mm_text_matches = {
modality: find_text_matches(text, updates)
for modality, updates in mm_prompt_updates.items()
}
text = self._apply_text_matches(
text,
mm_text_matches,
mm_item_counts,
)
token_ids = encode_tokens(tokenizer,
text,
add_special_tokens=False)
matched_updates = {
modality: [match._origin for match in token_matches]
for modality, token_matches in mm_text_matches.items()
}
placeholders = self._find_mm_placeholders(
matched_updates,
token_ids,
mm_item_counts,
)
return token_ids, text, placeholders
def _validate_mm_kwargs(
self,
mm_kwargs: MultiModalKwargs,
mm_item_counts: Mapping[str, int],
) -> None:
for modality, item_count in mm_item_counts.items():
if modality in mm_kwargs.modalities:
items = mm_kwargs.get_items(modality)
else:
items = []
if len(items) != item_count:
raise RuntimeError(
f"Expected there to be {item_count} {modality} items in "
f"keyword arguments corresponding to {item_count} "
f"{modality} data items, but only found {len(items)}! "
"There is likely a problem with your "
"implementation of merged multi-modal processor for this "
"model (usually arising from an inconsistency between "
"`_call_hf_processor` and `_get_mm_fields_config`).")
def _validate_mm_placeholders(
self,
mm_placeholders: Mapping[str, list[PlaceholderFeaturesInfo]],
mm_item_counts: Mapping[str, int],
) -> None:
for modality, item_count in mm_item_counts.items():
placeholders = mm_placeholders.get(modality, [])
if len(placeholders) != item_count:
raise RuntimeError(
f"Expected there to be {item_count} prompt updates "
f"corresponding to {item_count} {modality} items, but "
f"instead found {len(placeholders)} prompt updates! "
"Either the prompt text has missing/incorrect tokens for "
"multi-modal inputs, or there is a problem with your "
"implementation of merged multi-modal processor for this "
"model (usually arising from an inconsistency between "
"`_call_hf_processor` and `_get_prompt_updates`).")
def apply(
self,
prompt: Union[str, list[int]],
mm_data: MultiModalDataDict,
hf_processor_mm_kwargs: Mapping[str, object],
return_mm_hashes: bool = False,
) -> MultiModalInputs:
"""
Process multi-modal inputs to be used in vLLM.
The main steps are:
1. Apply HF Processor on prompt text and multi-modal data together,
outputting token IDs and processed tensors.
2. Find and update sequences in the token IDs with placeholder tokens.
The number of placeholder tokens equals the feature size of the
multi-modal data outputted by the multi-modal encoder.
3. Extract information about the placeholder tokens from the
processed token IDs.
"""
mm_items = self._to_mm_items(mm_data)
# Create MM hashes to be returned (only used in V1)
# TODO: Use these hash keys for caching operations in apply_hf_processor
# instead of rehashing.
if return_mm_hashes:
model_id = self.info.model_id
mm_hashes = {
modality: [
MultiModalHasher.hash_kwargs(model_id=model_id,
**{modality: item},
**hf_processor_mm_kwargs)
for item in items
]
for modality, items in mm_items.items()
}
else:
mm_hashes = None
(
prompt_ids,
mm_kwargs,
is_update_applied,
) = self._cached_apply_hf_processor(
prompt,
mm_items,
hf_processor_mm_kwargs,
)
unbound_prompt_updates = self._get_prompt_updates(
mm_items,
hf_processor_mm_kwargs,
mm_kwargs,
)
mm_prompt_updates = self._bind_and_group_updates(
unbound_prompt_updates)
mm_item_counts = mm_items.get_all_counts()
self._validate_mm_kwargs(mm_kwargs, mm_item_counts)
if is_update_applied:
mm_placeholders = self._find_mm_placeholders(
mm_prompt_updates,
prompt_ids,
mm_item_counts,
)
self._validate_mm_placeholders(mm_placeholders, mm_item_counts)
tokenizer = self.info.get_tokenizer()
prompt = decode_tokens(tokenizer, prompt_ids)
else:
(
prompt_ids,
prompt,
mm_placeholders,
) = self._apply_prompt_updates(
prompt_ids,
mm_prompt_updates,
mm_item_counts,
)
self._validate_mm_placeholders(mm_placeholders, mm_item_counts)
mm_placeholder_ranges = {
modality: [item.to_range() for item in placeholders]
for modality, placeholders in mm_placeholders.items()
}
return MultiModalInputs(
type="multimodal",
prompt=prompt,
prompt_token_ids=prompt_ids,
mm_kwargs=mm_kwargs,
mm_hashes=mm_hashes,
mm_placeholders=mm_placeholder_ranges,
)
class EncDecMultiModalProcessor(BaseMultiModalProcessor[_I]):
@abstractmethod
def create_encoder_prompt(
self,
prompt: Union[str, list[int]],
mm_data: MultiModalDataDict,
) -> Union[str, list[int]]:
"""
Create input prompt for the encoder. HF processor will be applied on
this prompt during profiling and generation.
"""
raise NotImplementedError
@property
def pad_dummy_encoder_prompt(self) -> bool:
return False
def create_decoder_prompt(
self,
prompt: Union[str, list[int]],
mm_data: MultiModalDataDict,
) -> Union[str, list[int]]:
"""Create input prompt for the decoder."""
return prompt
def apply(
self,
prompt: Union[str, list[int]],
mm_data: MultiModalDataDict,
hf_processor_mm_kwargs: Mapping[str, object],
return_mm_hashes: bool = False,
) -> MultiModalEncDecInputs:
"""
Process multi-modal inputs to be used in vLLM.
The main processing steps are modified to fit encoder-decoder model:
1. Create encoder prompt from input prompt text.
2. Apply the HF processor on encoder prompt.
3. Copy the input prompt text as decoder prompt inputs.
"""
encoder_prompt = self.create_encoder_prompt(prompt, mm_data)
encoder_inputs = super().apply(
encoder_prompt,
mm_data,
hf_processor_mm_kwargs,
return_mm_hashes,
)
tokenizer = self.info.get_tokenizer()
decoder_prompt = self.create_decoder_prompt(prompt, mm_data)
if isinstance(decoder_prompt, str):
decoder_prompt_ids = encode_tokens(tokenizer,
decoder_prompt,
add_special_tokens=False)
else:
decoder_prompt_ids = decoder_prompt
decoder_prompt = decode_tokens(tokenizer, decoder_prompt)
mm_inputs = MultiModalEncDecInputs(
encoder_prompt=encoder_inputs["prompt"],
encoder_prompt_token_ids=encoder_inputs["prompt_token_ids"],
**encoder_inputs)
mm_inputs.update({
"prompt": decoder_prompt,
"prompt_token_ids": decoder_prompt_ids
})
return mm_inputs