mirror of
https://git.datalinker.icu/vllm-project/vllm.git
synced 2025-12-30 11:58:43 +08:00
Signed-off-by: Varun Sundar Rabindranath <varun@neuralmagic.com> Co-authored-by: Varun Sundar Rabindranath <varun@neuralmagic.com>
161 lines
5.6 KiB
Plaintext
161 lines
5.6 KiB
Plaintext
#pragma once
|
|
|
|
// clang-format will break include orders
|
|
// clang-format off
|
|
#include <torch/all.h>
|
|
|
|
#include <ATen/cuda/CUDAContext.h>
|
|
|
|
#include "cutlass/cutlass.h"
|
|
|
|
#include "cute/tensor.hpp"
|
|
#include "cute/atom/mma_atom.hpp"
|
|
#include "cutlass/numeric_types.h"
|
|
|
|
#include "cutlass/gemm/device/gemm_universal_adapter.h"
|
|
#include "cutlass/gemm/kernel/gemm_universal.hpp"
|
|
#include "cutlass/epilogue/collective/collective_builder.hpp"
|
|
#include "cutlass/gemm/collective/collective_builder.hpp"
|
|
|
|
#include "core/math.hpp"
|
|
#include "cutlass_extensions/common.hpp"
|
|
// clang-format on
|
|
|
|
/*
|
|
Epilogues defined in,
|
|
csrc/cutlass_extensions/epilogue/scaled_mm_epilogues_c3x.hpp,
|
|
must contain a public type named EVTCompute of type Sm90EVT, as well as a
|
|
static prepare_args function that constructs an EVTCompute::Arguments struct.
|
|
*/
|
|
|
|
using namespace cute;
|
|
|
|
namespace vllm {
|
|
|
|
// A wrapper for the GEMM kernel that is used to guard against compilation on
|
|
// architectures that will never use the kernel. The purpose of this is to
|
|
// reduce the size of the compiled binary.
|
|
// __CUDA_ARCH__ is not defined in host code, so this lets us smuggle the ifdef
|
|
// into code that will be executed on the device where it is defined.
|
|
template <typename Kernel>
|
|
struct enable_sm90_or_later : Kernel {
|
|
template <typename... Args>
|
|
CUTLASS_DEVICE void operator()(Args&&... args) {
|
|
#if defined __CUDA_ARCH__ && __CUDA_ARCH__ >= 900
|
|
Kernel::operator()(std::forward<Args>(args)...);
|
|
#endif
|
|
}
|
|
};
|
|
|
|
template <typename ElementAB_, typename ElementD_,
|
|
template <typename, typename, typename> typename Epilogue_,
|
|
typename TileShape, typename ClusterShape, typename KernelSchedule,
|
|
typename EpilogueSchedule>
|
|
struct cutlass_3x_gemm {
|
|
using ElementAB = ElementAB_;
|
|
using ElementD = ElementD_;
|
|
using ElementAcc =
|
|
typename std::conditional<std::is_same_v<ElementAB, int8_t>, int32_t,
|
|
float>::type;
|
|
|
|
using EpilogueDescriptor =
|
|
cutlass::epilogue::collective::detail::EpilogueDescriptor<
|
|
TileShape, cutlass::epilogue::collective::EpilogueTileAuto, ElementD,
|
|
ElementD, EpilogueSchedule>;
|
|
|
|
using Epilogue = Epilogue_<ElementAcc, ElementD, EpilogueDescriptor>;
|
|
|
|
using StrideD = Stride<int64_t, Int<1>, Int<0>>;
|
|
using ElementC = void;
|
|
using StrideC = StrideD;
|
|
|
|
using EVTCompute = typename Epilogue::EVTCompute;
|
|
|
|
using CollectiveEpilogue =
|
|
typename cutlass::epilogue::collective::CollectiveBuilder<
|
|
cutlass::arch::Sm90, cutlass::arch::OpClassTensorOp, TileShape,
|
|
ClusterShape, cutlass::epilogue::collective::EpilogueTileAuto,
|
|
ElementAcc, float, ElementC, StrideC, 4, ElementD, StrideD, 4,
|
|
EpilogueSchedule, EVTCompute>::CollectiveOp;
|
|
|
|
static constexpr size_t CEStorageSize =
|
|
sizeof(typename CollectiveEpilogue::SharedStorage);
|
|
using Stages = typename cutlass::gemm::collective::StageCountAutoCarveout<
|
|
static_cast<int>(CEStorageSize)>;
|
|
|
|
// clang-format off
|
|
using CollectiveMainloop =
|
|
typename cutlass::gemm::collective::CollectiveBuilder<
|
|
cutlass::arch::Sm90, cutlass::arch::OpClassTensorOp,
|
|
ElementAB, cutlass::layout::RowMajor, 16,
|
|
ElementAB, cutlass::layout::ColumnMajor, 16,
|
|
ElementAcc, TileShape, ClusterShape,
|
|
Stages,
|
|
KernelSchedule>::CollectiveOp;
|
|
// clang-format on
|
|
|
|
using KernelType = enable_sm90_or_later<cutlass::gemm::kernel::GemmUniversal<
|
|
cute::Shape<int, int, int, int>, CollectiveMainloop, CollectiveEpilogue,
|
|
cutlass::gemm::PersistentScheduler>>;
|
|
|
|
struct GemmKernel : public KernelType {};
|
|
};
|
|
|
|
template <typename Gemm, typename... EpilogueArgs>
|
|
void cutlass_gemm_caller(torch::Tensor& out, torch::Tensor const& a,
|
|
torch::Tensor const& b,
|
|
EpilogueArgs&&... epilogue_params) {
|
|
using ElementAB = typename Gemm::ElementAB;
|
|
using ElementD = typename Gemm::ElementD;
|
|
|
|
int32_t m = a.size(0);
|
|
int32_t n = b.size(1);
|
|
int32_t k = a.size(1);
|
|
|
|
int64_t lda = a.stride(0);
|
|
int64_t ldb = b.stride(1);
|
|
int64_t ldc = out.stride(0);
|
|
|
|
using StrideA = Stride<int64_t, Int<1>, int64_t>;
|
|
using StrideB = Stride<int64_t, Int<1>, int64_t>;
|
|
using StrideC = typename Gemm::StrideC;
|
|
|
|
StrideA a_stride{lda, Int<1>{}, 0};
|
|
StrideB b_stride{ldb, Int<1>{}, 0};
|
|
StrideC c_stride{ldc, Int<1>{}, Int<0>{}};
|
|
|
|
using GemmKernel = typename Gemm::GemmKernel;
|
|
typename GemmKernel::ProblemShape prob_shape{m, n, k, 1};
|
|
|
|
auto a_ptr = static_cast<ElementAB*>(a.data_ptr());
|
|
auto b_ptr = static_cast<ElementAB*>(b.data_ptr());
|
|
typename GemmKernel::MainloopArguments mainloop_args{a_ptr, a_stride, b_ptr,
|
|
b_stride};
|
|
|
|
auto c_ptr = static_cast<ElementD*>(out.data_ptr());
|
|
typename GemmKernel::EpilogueArguments epilogue_args{
|
|
Gemm::Epilogue::prepare_args(
|
|
std::forward<EpilogueArgs>(epilogue_params)...),
|
|
c_ptr, c_stride, c_ptr, c_stride};
|
|
|
|
typename GemmKernel::Arguments args{cutlass::gemm::GemmUniversalMode::kGemm,
|
|
prob_shape, mainloop_args, epilogue_args};
|
|
|
|
// Launch the CUTLASS GEMM kernel.
|
|
using GemmOp = cutlass::gemm::device::GemmUniversalAdapter<GemmKernel>;
|
|
GemmOp gemm_op;
|
|
CUTLASS_CHECK(gemm_op.can_implement(args));
|
|
|
|
size_t workspace_size = gemm_op.get_workspace_size(args);
|
|
auto const workspace_options =
|
|
torch::TensorOptions().dtype(torch::kUInt8).device(a.device());
|
|
auto workspace = torch::empty(workspace_size, workspace_options);
|
|
|
|
auto stream = at::cuda::getCurrentCUDAStream(a.get_device());
|
|
|
|
cutlass::Status status = gemm_op.run(args, workspace.data_ptr(), stream);
|
|
CUTLASS_CHECK(status);
|
|
}
|
|
|
|
} // namespace vllm
|