mirror of
https://git.datalinker.icu/vllm-project/vllm.git
synced 2025-12-10 06:05:02 +08:00
Signed-off-by: Stephanie Wang <swang@cs.berkeley.edu> Signed-off-by: Stephanie <swang@anyscale.com> Co-authored-by: Stephanie <swang@anyscale.com>
471 lines
19 KiB
Python
471 lines
19 KiB
Python
from dataclasses import dataclass
|
|
from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple, Type, Union
|
|
|
|
import torch
|
|
import torch.nn as nn
|
|
|
|
from vllm.attention import get_attn_backend
|
|
from vllm.config import (CacheConfig, DeviceConfig, LoadConfig, LoRAConfig,
|
|
ModelConfig, ParallelConfig, SchedulerConfig,
|
|
VisionLanguageConfig)
|
|
from vllm.distributed import broadcast_tensor_dict
|
|
from vllm.logger import init_logger
|
|
from vllm.model_executor.model_loader import get_model
|
|
from vllm.sampling_params import SamplingParams
|
|
from vllm.sequence import SamplerOutput, SequenceData, SequenceGroupMetadata
|
|
from vllm.utils import CudaMemoryProfiler, make_tensor_with_pad
|
|
from vllm.worker.model_runner import AttentionMetadata, SamplingMetadata
|
|
from vllm.worker.model_runner_base import (
|
|
ModelRunnerBase, ModelRunnerInputBase,
|
|
_add_attn_metadata_broadcastable_dict,
|
|
_add_sampling_metadata_broadcastable_dict,
|
|
_init_attn_metadata_from_tensor_dict,
|
|
_init_sampling_metadata_from_tensor_dict)
|
|
|
|
if TYPE_CHECKING:
|
|
from vllm.attention.backends.abstract import AttentionBackend
|
|
|
|
logger = init_logger(__name__)
|
|
|
|
_PAD_SLOT_ID = -1
|
|
_BATCH_SIZE_ALIGNMENT = 8
|
|
_BATCH_SIZES_TO_CAPTURE = [1, 2, 4] + [
|
|
_BATCH_SIZE_ALIGNMENT * i for i in range(1, 33)
|
|
]
|
|
|
|
|
|
@dataclass(frozen=True)
|
|
class ModelInputForXPU(ModelRunnerInputBase):
|
|
"""
|
|
Used by the NeuronModelRunner.
|
|
"""
|
|
input_tokens: Optional[torch.Tensor] = None
|
|
input_positions: Optional[torch.Tensor] = None
|
|
attn_metadata: Optional["AttentionMetadata"] = None
|
|
sampling_metadata: Optional["SamplingMetadata"] = None
|
|
multi_modal_input: Optional[Dict[str, torch.Tensor]] = None
|
|
|
|
def as_broadcastable_tensor_dict(
|
|
self) -> Dict[str, Union[int, torch.Tensor]]:
|
|
tensor_dict = {
|
|
"input_tokens": self.input_tokens,
|
|
"input_positions": self.input_positions,
|
|
}
|
|
_add_attn_metadata_broadcastable_dict(tensor_dict, self.attn_metadata)
|
|
_add_sampling_metadata_broadcastable_dict(tensor_dict,
|
|
self.sampling_metadata)
|
|
return tensor_dict
|
|
|
|
@classmethod
|
|
def from_broadcasted_tensor_dict(
|
|
cls: Type["ModelInputForXPU"],
|
|
tensor_dict: Dict[str, Any],
|
|
attn_backend: Optional["AttentionBackend"] = None,
|
|
) -> "ModelInputForXPU":
|
|
tensor_dict = _init_sampling_metadata_from_tensor_dict(tensor_dict)
|
|
if attn_backend is not None:
|
|
tensor_dict = _init_attn_metadata_from_tensor_dict(
|
|
attn_backend, tensor_dict)
|
|
return cls(**tensor_dict)
|
|
|
|
|
|
class XPUModelRunner(ModelRunnerBase[ModelInputForXPU]):
|
|
|
|
def __init__(
|
|
self,
|
|
model_config: ModelConfig,
|
|
parallel_config: ParallelConfig,
|
|
scheduler_config: SchedulerConfig,
|
|
device_config: DeviceConfig,
|
|
cache_config: CacheConfig,
|
|
load_config: LoadConfig,
|
|
lora_config: Optional[LoRAConfig],
|
|
vision_language_config: Optional[VisionLanguageConfig],
|
|
kv_cache_dtype: Optional[str] = "auto",
|
|
is_driver_worker: bool = False,
|
|
*args,
|
|
**kwargs,
|
|
):
|
|
self.model_config = model_config
|
|
self.parallel_config = parallel_config
|
|
self.scheduler_config = scheduler_config
|
|
self.lora_config = lora_config
|
|
self.load_config = load_config
|
|
self.cache_config = cache_config
|
|
self.vision_language_config = vision_language_config
|
|
self.is_driver_worker = is_driver_worker
|
|
|
|
self.sliding_window = model_config.get_sliding_window()
|
|
self.device_config = device_config
|
|
self.device = self.device_config.device
|
|
|
|
self.kv_cache_dtype = kv_cache_dtype
|
|
self.block_size = cache_config.block_size
|
|
self.max_context_len_to_capture = (
|
|
self.model_config.max_context_len_to_capture
|
|
if self.model_config is not None else 0)
|
|
|
|
self.attn_backend = get_attn_backend(
|
|
self.model_config.get_num_attention_heads(self.parallel_config),
|
|
self.model_config.get_head_size(),
|
|
self.model_config.get_num_kv_heads(self.parallel_config),
|
|
self.model_config.get_sliding_window(),
|
|
self.model_config.dtype,
|
|
self.kv_cache_dtype,
|
|
self.block_size,
|
|
)
|
|
|
|
# Lazy initialization.
|
|
self.model: nn.Module # Set after init_Model
|
|
|
|
def load_model(self) -> None:
|
|
with CudaMemoryProfiler() as m:
|
|
self.model = get_model(
|
|
model_config=self.model_config,
|
|
device_config=self.device_config,
|
|
load_config=self.load_config,
|
|
lora_config=self.lora_config,
|
|
vision_language_config=self.vision_language_config,
|
|
parallel_config=self.parallel_config,
|
|
scheduler_config=self.scheduler_config,
|
|
cache_config=self.cache_config,
|
|
)
|
|
|
|
self.model_memory_usage = m.consumed_memory
|
|
logger.info("Loading model weights took %.4f GB",
|
|
self.model_memory_usage / float(2**30))
|
|
|
|
@property
|
|
def vocab_size(self) -> int:
|
|
return self.model_config.get_vocab_size()
|
|
|
|
@torch.inference_mode()
|
|
def profile_run(self) -> None:
|
|
# Enable top-k sampling to reflect the accurate memory usage.
|
|
sampling_params = SamplingParams(top_p=0.99, top_k=self.vocab_size - 1)
|
|
max_num_batched_tokens = self.scheduler_config.max_num_batched_tokens
|
|
max_num_seqs = self.scheduler_config.max_num_seqs
|
|
|
|
# Profile memory usage with max_num_sequences sequences and the total
|
|
# number of tokens equal to max_num_batched_tokens.
|
|
seqs: List[SequenceGroupMetadata] = []
|
|
# Additional GPU memory may be needed for vision encoding, which needs
|
|
# to be accounted for when calculating the GPU blocks for
|
|
# vLLM blocker manager.
|
|
# To exercise the worst scenario for GPU memory consumption,
|
|
# the number of seqs (batch_size) is chosen to maximize the number
|
|
# of images processed.
|
|
for group_id in range(max_num_seqs):
|
|
seq_len = (max_num_batched_tokens // max_num_seqs +
|
|
(group_id < max_num_batched_tokens % max_num_seqs))
|
|
|
|
seq_data = SequenceData([0] * seq_len)
|
|
dummy_multi_modal_data = None
|
|
seq = SequenceGroupMetadata(
|
|
request_id=str(group_id),
|
|
is_prompt=True,
|
|
seq_data={group_id: seq_data},
|
|
sampling_params=sampling_params,
|
|
block_tables=None,
|
|
lora_request=None,
|
|
multi_modal_data=dummy_multi_modal_data,
|
|
)
|
|
seqs.append(seq)
|
|
|
|
# Run the model with the dummy inputs.
|
|
num_layers = self.model_config.get_num_layers(self.parallel_config)
|
|
kv_caches = [None] * num_layers
|
|
model_input = self.prepare_model_input(seqs)
|
|
self.execute_model(model_input, kv_caches)
|
|
torch.xpu.synchronize()
|
|
return
|
|
|
|
def make_model_input_from_broadcasted_tensor_dict(
|
|
self, tensor_dict: Dict[str, Any]) -> ModelInputForXPU:
|
|
return (ModelInputForXPU.from_broadcasted_tensor_dict(
|
|
tensor_dict,
|
|
attn_backend=self.attn_backend,
|
|
))
|
|
|
|
def prepare_model_input(
|
|
self,
|
|
seq_group_metadata_list: List[SequenceGroupMetadata],
|
|
) -> ModelInputForXPU:
|
|
multi_modal_input = None
|
|
if self.is_driver_worker:
|
|
# NOTE: We assume that all sequences in the group are all prompts or
|
|
# all decodes.
|
|
is_prompt = seq_group_metadata_list[0].is_prompt
|
|
# Prepare input tensors.
|
|
if is_prompt:
|
|
(input_tokens, input_positions, attn_metadata, seq_lens,
|
|
multi_modal_input
|
|
) = self._prepare_prompt(seq_group_metadata_list)
|
|
else:
|
|
(input_tokens, input_positions,
|
|
attn_metadata) = self._prepare_decode(seq_group_metadata_list)
|
|
seq_lens = []
|
|
sampling_metadata = SamplingMetadata.prepare(
|
|
seq_group_metadata_list,
|
|
seq_lens,
|
|
# subquery_lens is not needed if chunked prefill is not
|
|
# supported. Since CPU worker doesn't support chunked prefill
|
|
# just use seq_lens instead.
|
|
seq_lens,
|
|
self.device,
|
|
pin_memory=False)
|
|
# Broadcast the metadata.
|
|
metadata_dict = {
|
|
"input_tokens": input_tokens,
|
|
"input_positions": input_positions,
|
|
"selected_token_indices":
|
|
sampling_metadata.selected_token_indices,
|
|
}
|
|
metadata_dict.update(attn_metadata.asdict_zerocopy())
|
|
broadcast_tensor_dict(metadata_dict, src=0)
|
|
else:
|
|
metadata_dict = broadcast_tensor_dict(src=0)
|
|
input_tokens = metadata_dict.pop("input_tokens")
|
|
input_positions = metadata_dict.pop("input_positions")
|
|
selected_token_indices = metadata_dict.pop(
|
|
"selected_token_indices")
|
|
attn_metadata = self.attn_backend.make_metadata(**metadata_dict)
|
|
sampling_metadata = SamplingMetadata(
|
|
seq_groups=None,
|
|
selected_token_indices=selected_token_indices,
|
|
categorized_sample_indices=None,
|
|
num_prompts=0,
|
|
)
|
|
|
|
return ModelInputForXPU(input_tokens=input_tokens,
|
|
input_positions=input_positions,
|
|
attn_metadata=attn_metadata,
|
|
sampling_metadata=sampling_metadata,
|
|
multi_modal_input=multi_modal_input)
|
|
|
|
def _prepare_decode(
|
|
self,
|
|
seq_group_metadata_list: List[SequenceGroupMetadata],
|
|
) -> Tuple[torch.Tensor, torch.Tensor, AttentionMetadata]:
|
|
assert len(seq_group_metadata_list) > 0
|
|
input_tokens: List[int] = []
|
|
input_positions: List[int] = []
|
|
slot_mapping: List[int] = []
|
|
seq_lens: List[int] = []
|
|
block_tables: List[List[int]] = []
|
|
|
|
for seq_group_metadata in seq_group_metadata_list:
|
|
assert not seq_group_metadata.is_prompt
|
|
assert seq_group_metadata.token_chunk_size == 1
|
|
|
|
seq_ids = list(seq_group_metadata.seq_data.keys())
|
|
|
|
for seq_id in seq_ids:
|
|
seq_data = seq_group_metadata.seq_data[seq_id]
|
|
generation_token = seq_data.get_last_token_id()
|
|
input_tokens.append(generation_token)
|
|
|
|
seq_len = seq_data.get_len()
|
|
position = seq_len - 1
|
|
input_positions.append(position)
|
|
|
|
seq_len = seq_len if self.sliding_window is None else min(
|
|
seq_len, self.sliding_window)
|
|
seq_lens.append(seq_len)
|
|
|
|
block_table = seq_group_metadata.block_tables[seq_id]
|
|
block_number = block_table[position // self.block_size]
|
|
block_offset = position % self.block_size
|
|
slot = block_number * self.block_size + block_offset
|
|
slot_mapping.append(slot)
|
|
|
|
if self.sliding_window is not None:
|
|
sliding_window_blocks = (self.sliding_window //
|
|
self.block_size)
|
|
block_table = block_table[-sliding_window_blocks:]
|
|
block_tables.append(block_table)
|
|
|
|
max_decode_seq_len = max(seq_lens)
|
|
|
|
input_tokens = torch.tensor(input_tokens,
|
|
dtype=torch.long,
|
|
device=self.device)
|
|
input_positions = torch.tensor(input_positions,
|
|
dtype=torch.long,
|
|
device=self.device)
|
|
slot_mapping = torch.tensor(slot_mapping,
|
|
dtype=torch.long,
|
|
device=self.device)
|
|
seq_lens_tensor = torch.tensor(seq_lens,
|
|
dtype=torch.int,
|
|
device=self.device)
|
|
|
|
max_block_table_len = max(
|
|
len(block_table) for block_table in block_tables)
|
|
block_tables = make_tensor_with_pad(
|
|
block_tables,
|
|
max_len=max_block_table_len,
|
|
pad=0,
|
|
dtype=torch.int,
|
|
device=self.device,
|
|
)
|
|
|
|
attn_metadata = self.attn_backend.make_metadata(
|
|
is_prompt=False,
|
|
slot_mapping=slot_mapping,
|
|
seq_lens=seq_lens,
|
|
seqlen_q=None,
|
|
max_seqlen=None,
|
|
seq_lens_tensor=seq_lens_tensor,
|
|
max_decode_seq_len=max_decode_seq_len,
|
|
num_prefill_tokens=0,
|
|
num_decode_tokens=len(input_tokens),
|
|
num_prefills=0,
|
|
block_tables=block_tables,
|
|
)
|
|
return (
|
|
input_tokens,
|
|
input_positions,
|
|
attn_metadata,
|
|
)
|
|
|
|
@torch.inference_mode()
|
|
def execute_model(
|
|
self,
|
|
model_input: ModelInputForXPU,
|
|
kv_caches: List[torch.Tensor],
|
|
) -> Optional[SamplerOutput]:
|
|
model_executable = self.model
|
|
execute_model_kwargs = {
|
|
"input_ids": model_input.input_tokens,
|
|
"positions": model_input.input_positions,
|
|
"kv_caches": kv_caches,
|
|
"attn_metadata": model_input.attn_metadata,
|
|
}
|
|
if self.vision_language_config:
|
|
execute_model_kwargs.update(
|
|
{"image_input": model_input.multi_modal_input})
|
|
|
|
hidden_states = model_executable(**execute_model_kwargs)
|
|
|
|
# Compute the logits.
|
|
logits = self.model.compute_logits(hidden_states,
|
|
model_input.sampling_metadata)
|
|
|
|
# Only perform sampling in the driver worker.
|
|
if not self.is_driver_worker:
|
|
return None
|
|
|
|
# Sample the next token.
|
|
output = self.model.sample(
|
|
logits=logits,
|
|
sampling_metadata=model_input.sampling_metadata,
|
|
)
|
|
return output
|
|
|
|
def _prepare_prompt(
|
|
self,
|
|
seq_group_metadata_list: List[SequenceGroupMetadata],
|
|
) -> Tuple[torch.Tensor, torch.Tensor, AttentionMetadata, List[int],
|
|
Optional[torch.Tensor]]:
|
|
assert len(seq_group_metadata_list) > 0
|
|
input_tokens: List[int] = []
|
|
input_positions: List[int] = []
|
|
slot_mapping: List[int] = []
|
|
seq_lens: List[int] = []
|
|
multi_modal_input_list: List[torch.Tensor] = []
|
|
|
|
for seq_group_metadata in seq_group_metadata_list:
|
|
assert seq_group_metadata.is_prompt
|
|
seq_ids = list(seq_group_metadata.seq_data.keys())
|
|
assert len(seq_ids) == 1
|
|
seq_id = seq_ids[0]
|
|
|
|
seq_data = seq_group_metadata.seq_data[seq_id]
|
|
prompt_tokens = seq_data.get_token_ids()
|
|
computed_len = seq_data.get_num_computed_tokens()
|
|
seq_len = len(prompt_tokens)
|
|
|
|
seq_lens.append(seq_len) # Prompt token num
|
|
input_tokens.extend(prompt_tokens) # Token ids
|
|
|
|
# Token position ids
|
|
# NOTE(woosuk): Here we assume that the first token in the prompt
|
|
# is always the first token in the sequence.
|
|
input_positions.extend(list(range(computed_len, seq_len)))
|
|
|
|
if seq_group_metadata.multi_modal_data:
|
|
multi_modal_input_list.append(
|
|
seq_group_metadata.multi_modal_data.data)
|
|
|
|
if seq_group_metadata.block_tables is None:
|
|
# During memory profiling, the block tables are not initialized
|
|
# yet. In this case, we just use a dummy slot mapping.
|
|
slot_mapping.extend([_PAD_SLOT_ID] * seq_len)
|
|
continue
|
|
|
|
# Compute the slot mapping.
|
|
block_table = seq_group_metadata.block_tables[seq_id]
|
|
# Mask the [0, start_idx) tokens of the prompt with _PAD_SLOT_ID,
|
|
# where start_idx is max(0, seq_len - sliding_window).
|
|
# For example, if the prompt len is 10, sliding window is 8, and
|
|
# block size is 4, the first two tokens are masked and the slot
|
|
# mapping will be [-1, -1, 2, 3, 4, 5, 6, 7, 0, 1].
|
|
start_idx = 0
|
|
if self.sliding_window is not None:
|
|
start_idx = max(0, seq_len - self.sliding_window)
|
|
|
|
for i in range(computed_len, seq_len):
|
|
if i < start_idx:
|
|
slot_mapping.append(_PAD_SLOT_ID)
|
|
continue
|
|
|
|
block_number = block_table[i //
|
|
self.block_size] # type: ignore
|
|
block_offset = i % self.block_size # type: ignore
|
|
slot = block_number * self.block_size + block_offset
|
|
slot_mapping.append(slot)
|
|
|
|
if multi_modal_input_list:
|
|
assert self.vision_language_config, (
|
|
"Multi-modal inputs are only supported by "
|
|
"vision language models.")
|
|
multi_modal_input = torch.cat(multi_modal_input_list,
|
|
dim=0).to(self.device)
|
|
else:
|
|
multi_modal_input = None
|
|
|
|
num_prompt_tokens = len(input_tokens)
|
|
|
|
input_tokens = torch.tensor(input_tokens,
|
|
dtype=torch.long,
|
|
device=self.device) # type: ignore
|
|
input_positions = torch.tensor(input_positions,
|
|
dtype=torch.long,
|
|
device=self.device) # type: ignore
|
|
slot_mapping = torch.tensor(slot_mapping,
|
|
dtype=torch.long,
|
|
device=self.device) # type: ignore
|
|
|
|
max_seqlen = max(seq_lens)
|
|
tmp = [0]
|
|
tmp.extend(seq_lens)
|
|
seqlen = torch.tensor(tmp)
|
|
seqlen_q = torch.cumsum(seqlen, dim=0).to(device=self.device)
|
|
|
|
attn_metadata = self.attn_backend.make_metadata(
|
|
is_prompt=True,
|
|
slot_mapping=slot_mapping,
|
|
seq_lens=seq_lens,
|
|
seqlen_q=seqlen_q,
|
|
max_seqlen=max_seqlen,
|
|
seq_lens_tensor=None,
|
|
max_decode_seq_len=None,
|
|
num_prefills=len(seq_lens),
|
|
num_prefill_tokens=num_prompt_tokens,
|
|
num_decode_tokens=0,
|
|
block_tables=torch.tensor([], device=self.device, dtype=torch.int),
|
|
)
|
|
return (input_tokens, input_positions, attn_metadata, seq_lens,
|
|
multi_modal_input)
|