mirror of
https://git.datalinker.icu/vllm-project/vllm.git
synced 2025-12-17 21:06:02 +08:00
382 lines
14 KiB
Python
382 lines
14 KiB
Python
# SPDX-License-Identifier: Apache-2.0
|
|
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
|
|
|
# Adapted from
|
|
# https://github.com/huggingface/transformers/blob/v4.28.0/src/transformers/models/gpt2/modeling_gpt2.py
|
|
# Copyright 2023 The vLLM team.
|
|
# Copyright 2018 The OpenAI Team Authors and HuggingFace Inc. team.
|
|
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""Inference-only GPT-2 model compatible with HuggingFace weights."""
|
|
from collections.abc import Iterable
|
|
from itertools import islice
|
|
from typing import Optional, Union
|
|
|
|
import torch
|
|
from torch import nn
|
|
from transformers import GPT2Config
|
|
|
|
from vllm.attention import Attention
|
|
from vllm.compilation.decorators import support_torch_compile
|
|
from vllm.config import CacheConfig, VllmConfig
|
|
from vllm.distributed.parallel_state import (
|
|
get_pp_group, get_tensor_model_parallel_world_size)
|
|
from vllm.model_executor.layers.activation import get_act_fn
|
|
from vllm.model_executor.layers.linear import (ColumnParallelLinear,
|
|
QKVParallelLinear,
|
|
RowParallelLinear)
|
|
from vllm.model_executor.layers.logits_processor import LogitsProcessor
|
|
from vllm.model_executor.layers.quantization import QuantizationConfig
|
|
from vllm.model_executor.layers.vocab_parallel_embedding import (
|
|
ParallelLMHead, VocabParallelEmbedding)
|
|
from vllm.model_executor.model_loader.weight_utils import default_weight_loader
|
|
from vllm.model_executor.sampling_metadata import SamplingMetadata
|
|
from vllm.sequence import IntermediateTensors
|
|
|
|
from ..layers.pooler import DispatchPooler, Pooler
|
|
from .interfaces import SupportsPP
|
|
from .utils import (AutoWeightsLoader, is_pp_missing_parameter,
|
|
make_empty_intermediate_tensors_factory, make_layers,
|
|
maybe_prefix)
|
|
|
|
|
|
class GPT2Attention(nn.Module):
|
|
|
|
def __init__(
|
|
self,
|
|
config: GPT2Config,
|
|
cache_config: Optional[CacheConfig] = None,
|
|
quant_config: Optional[QuantizationConfig] = None,
|
|
prefix: str = "",
|
|
):
|
|
super().__init__()
|
|
self.hidden_size = config.hidden_size
|
|
total_num_heads = config.num_attention_heads
|
|
tensor_model_parallel_world_size = (
|
|
get_tensor_model_parallel_world_size())
|
|
assert total_num_heads % tensor_model_parallel_world_size == 0
|
|
self.num_heads = total_num_heads // tensor_model_parallel_world_size
|
|
self.head_dim = self.hidden_size // total_num_heads
|
|
self.scale = self.head_dim**-0.5
|
|
|
|
self.c_attn = QKVParallelLinear(
|
|
self.hidden_size,
|
|
self.head_dim,
|
|
total_num_heads,
|
|
bias=True,
|
|
quant_config=quant_config,
|
|
prefix=f"{prefix}.c_attn",
|
|
)
|
|
self.c_proj = RowParallelLinear(
|
|
self.hidden_size,
|
|
self.hidden_size,
|
|
bias=True,
|
|
quant_config=quant_config,
|
|
prefix=f"{prefix}.c_proj",
|
|
)
|
|
self.attn = Attention(self.num_heads,
|
|
self.head_dim,
|
|
scale=self.scale,
|
|
cache_config=cache_config,
|
|
quant_config=quant_config,
|
|
prefix=f"{prefix}.attn")
|
|
|
|
def forward(
|
|
self,
|
|
hidden_states: torch.Tensor,
|
|
) -> torch.Tensor:
|
|
qkv, _ = self.c_attn(hidden_states)
|
|
q, k, v = qkv.chunk(chunks=3, dim=-1)
|
|
attn_output = self.attn(q, k, v)
|
|
attn_output, _ = self.c_proj(attn_output)
|
|
return attn_output
|
|
|
|
|
|
class GPT2MLP(nn.Module):
|
|
|
|
def __init__(
|
|
self,
|
|
intermediate_size: int,
|
|
config: GPT2Config,
|
|
quant_config: Optional[QuantizationConfig] = None,
|
|
prefix: str = "",
|
|
):
|
|
super().__init__()
|
|
hidden_size = config.hidden_size
|
|
self.c_fc = ColumnParallelLinear(
|
|
hidden_size,
|
|
intermediate_size,
|
|
bias=True,
|
|
quant_config=quant_config,
|
|
prefix=f"{prefix}.c_fc",
|
|
)
|
|
self.c_proj = RowParallelLinear(
|
|
intermediate_size,
|
|
hidden_size,
|
|
bias=True,
|
|
quant_config=quant_config,
|
|
prefix=f"{prefix}.c_proj",
|
|
)
|
|
self.act = get_act_fn(config.activation_function)
|
|
|
|
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
|
hidden_states, _ = self.c_fc(hidden_states)
|
|
hidden_states = self.act(hidden_states)
|
|
hidden_states, _ = self.c_proj(hidden_states)
|
|
return hidden_states
|
|
|
|
|
|
class GPT2Block(nn.Module):
|
|
|
|
def __init__(
|
|
self,
|
|
config: GPT2Config,
|
|
cache_config: Optional[CacheConfig] = None,
|
|
quant_config: Optional[QuantizationConfig] = None,
|
|
prefix: str = "",
|
|
):
|
|
super().__init__()
|
|
hidden_size = config.hidden_size
|
|
inner_dim = (config.n_inner if config.n_inner is not None else 4 *
|
|
hidden_size)
|
|
|
|
self.ln_1 = nn.LayerNorm(hidden_size, eps=config.layer_norm_epsilon)
|
|
self.attn = GPT2Attention(config,
|
|
cache_config,
|
|
quant_config,
|
|
prefix=f"{prefix}.attn")
|
|
self.ln_2 = nn.LayerNorm(hidden_size, eps=config.layer_norm_epsilon)
|
|
self.mlp = GPT2MLP(inner_dim,
|
|
config,
|
|
quant_config,
|
|
prefix=f"{prefix}.mlp")
|
|
|
|
def forward(
|
|
self,
|
|
hidden_states: torch.Tensor,
|
|
) -> torch.Tensor:
|
|
residual = hidden_states
|
|
hidden_states = self.ln_1(hidden_states)
|
|
attn_output = self.attn(hidden_states=hidden_states)
|
|
# residual connection
|
|
hidden_states = attn_output + residual
|
|
|
|
residual = hidden_states
|
|
hidden_states = self.ln_2(hidden_states)
|
|
feed_forward_hidden_states = self.mlp(hidden_states)
|
|
# residual connection
|
|
hidden_states = residual + feed_forward_hidden_states
|
|
return hidden_states
|
|
|
|
|
|
@support_torch_compile
|
|
class GPT2Model(nn.Module):
|
|
|
|
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
|
|
super().__init__()
|
|
|
|
config = vllm_config.model_config.hf_config
|
|
cache_config = vllm_config.cache_config
|
|
quant_config = vllm_config.quant_config
|
|
|
|
self.config = config
|
|
assert not config.add_cross_attention
|
|
assert not config.scale_attn_by_inverse_layer_idx
|
|
assert not config.reorder_and_upcast_attn
|
|
self.embed_dim = config.hidden_size
|
|
self.wte = VocabParallelEmbedding(config.vocab_size,
|
|
self.embed_dim,
|
|
quant_config=quant_config,
|
|
prefix=f"{prefix}.wte")
|
|
self.wpe = nn.Embedding(config.max_position_embeddings, self.embed_dim)
|
|
self.start_layer, self.end_layer, self.h = make_layers(
|
|
config.num_hidden_layers,
|
|
lambda prefix: GPT2Block(
|
|
config, cache_config, quant_config, prefix=prefix),
|
|
prefix=f"{prefix}.h")
|
|
self.ln_f = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_epsilon)
|
|
self.make_empty_intermediate_tensors = (
|
|
make_empty_intermediate_tensors_factory(["hidden_states"],
|
|
config.n_embd))
|
|
|
|
def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor:
|
|
return self.wte(input_ids)
|
|
|
|
def forward(
|
|
self,
|
|
input_ids: torch.Tensor,
|
|
position_ids: torch.Tensor,
|
|
intermediate_tensors: Optional[IntermediateTensors],
|
|
inputs_embeds: Optional[torch.Tensor],
|
|
) -> Union[torch.Tensor, IntermediateTensors]:
|
|
if get_pp_group().is_first_rank:
|
|
if inputs_embeds is None:
|
|
inputs_embeds = self.get_input_embeddings(input_ids)
|
|
position_embeds = self.wpe(position_ids)
|
|
hidden_states = inputs_embeds + position_embeds
|
|
else:
|
|
assert intermediate_tensors is not None
|
|
hidden_states = intermediate_tensors["hidden_states"]
|
|
|
|
for layer in islice(self.h, self.start_layer, self.end_layer):
|
|
hidden_states = layer(hidden_states)
|
|
|
|
if not get_pp_group().is_last_rank:
|
|
return IntermediateTensors({"hidden_states": hidden_states})
|
|
|
|
hidden_states = self.ln_f(hidden_states)
|
|
return hidden_states
|
|
|
|
def load_weights(self, weights: Iterable[tuple[str,
|
|
torch.Tensor]]) -> set[str]:
|
|
params_dict = dict(self.named_parameters(remove_duplicate=False))
|
|
loaded_params: set[str] = set()
|
|
for name, loaded_weight in weights:
|
|
if ".attn.bias" in name or ".attn.masked_bias" in name:
|
|
# Skip attention mask.
|
|
# NOTE: "c_attn.bias" should not be skipped.
|
|
continue
|
|
|
|
if is_pp_missing_parameter(name, self):
|
|
continue
|
|
|
|
param = params_dict[name]
|
|
# The HF's GPT-2 implementation uses Conv1D instead of Linear.
|
|
# Because of this, we need to transpose the weights.
|
|
# Note(zhuohan): the logic below might break quantized models.
|
|
for conv1d_weight_name in ["c_attn", "c_proj", "c_fc"]:
|
|
if conv1d_weight_name not in name:
|
|
continue
|
|
if not name.endswith(".weight"):
|
|
continue
|
|
loaded_weight = loaded_weight.t()
|
|
weight_loader = getattr(param, "weight_loader",
|
|
default_weight_loader)
|
|
weight_loader(param, loaded_weight)
|
|
loaded_params.add(name)
|
|
return loaded_params
|
|
|
|
|
|
class GPT2LMHeadModel(nn.Module, SupportsPP):
|
|
|
|
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
|
|
super().__init__()
|
|
config = vllm_config.model_config.hf_config
|
|
quant_config = vllm_config.quant_config
|
|
self.config = config
|
|
self.quant_config = quant_config
|
|
self.transformer = GPT2Model(vllm_config=vllm_config,
|
|
prefix=maybe_prefix(
|
|
prefix, "transformer"))
|
|
self.lm_head = ParallelLMHead(self.config.vocab_size,
|
|
self.config.hidden_size,
|
|
quant_config=quant_config,
|
|
prefix=f"{prefix}.lm_head")
|
|
if self.config.tie_word_embeddings:
|
|
self.lm_head = self.lm_head.tie_weights(self.transformer.wte)
|
|
|
|
self.logits_processor = LogitsProcessor(config.vocab_size)
|
|
self.make_empty_intermediate_tensors = (
|
|
self.transformer.make_empty_intermediate_tensors)
|
|
|
|
def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor:
|
|
return self.transformer.get_input_embeddings(input_ids)
|
|
|
|
def forward(
|
|
self,
|
|
input_ids: torch.Tensor,
|
|
positions: torch.Tensor,
|
|
intermediate_tensors: Optional[IntermediateTensors] = None,
|
|
inputs_embeds: Optional[torch.Tensor] = None,
|
|
) -> Union[torch.Tensor, IntermediateTensors]:
|
|
hidden_states = self.transformer(input_ids, positions,
|
|
intermediate_tensors, inputs_embeds)
|
|
return hidden_states
|
|
|
|
def compute_logits(
|
|
self,
|
|
hidden_states: torch.Tensor,
|
|
sampling_metadata: SamplingMetadata,
|
|
) -> Optional[torch.Tensor]:
|
|
logits = self.logits_processor(self.lm_head, hidden_states,
|
|
sampling_metadata)
|
|
return logits
|
|
|
|
def load_weights(self, weights: Iterable[tuple[str,
|
|
torch.Tensor]]) -> set[str]:
|
|
loader = AutoWeightsLoader(self)
|
|
weights = _add_transformer_prefix(weights)
|
|
return loader.load_weights(weights)
|
|
|
|
|
|
class GPT2ForSequenceClassification(nn.Module):
|
|
"""GPT2 Model for sequence classification.
|
|
|
|
This class expands GPT2Model with pooling and score functions - last token
|
|
is being used for classification.
|
|
|
|
Attributes:
|
|
transformer: An instance of GPT2Model used for forward operations.
|
|
score: A layer for calculating logits.
|
|
_pooler: An instance of Pooler used for pooling operations.
|
|
"""
|
|
|
|
is_pooling_model = True
|
|
|
|
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
|
|
super().__init__()
|
|
config = vllm_config.model_config.hf_config
|
|
self.transformer = GPT2Model(vllm_config=vllm_config,
|
|
prefix=maybe_prefix(prefix, "gpt2"))
|
|
self.score = nn.Linear(config.n_embd, config.num_labels, bias=False)
|
|
|
|
pooler_config = vllm_config.model_config.pooler_config
|
|
assert pooler_config is not None
|
|
|
|
self.pooler = DispatchPooler({
|
|
"encode":
|
|
Pooler.for_encode(pooler_config),
|
|
"classify":
|
|
Pooler.for_classify(pooler_config, classifier=None),
|
|
})
|
|
|
|
def load_weights(self, weights: Iterable[tuple[str, torch.Tensor]]):
|
|
loader = AutoWeightsLoader(self)
|
|
return loader.load_weights(weights)
|
|
|
|
def forward(
|
|
self,
|
|
input_ids: torch.Tensor,
|
|
positions: torch.Tensor,
|
|
intermediate_tensors: Optional[IntermediateTensors] = None,
|
|
inputs_embeds: Optional[torch.Tensor] = None,
|
|
) -> torch.Tensor:
|
|
hidden_states = self.transformer(
|
|
input_ids=input_ids,
|
|
position_ids=positions,
|
|
inputs_embeds=inputs_embeds,
|
|
intermediate_tensors=intermediate_tensors)
|
|
logits = self.score(hidden_states)
|
|
return logits
|
|
|
|
|
|
def _add_transformer_prefix(
|
|
weights: Iterable[tuple[str, torch.Tensor]]
|
|
) -> Iterable[tuple[str, torch.Tensor]]:
|
|
for name, tensor in weights:
|
|
if not name.startswith('transformer.') and not name.startswith(
|
|
"lm_head"):
|
|
name = 'transformer.' + name
|
|
yield name, tensor
|