vllm/vllm/executor/multiproc_worker_utils.py
2024-12-28 01:45:08 +00:00

303 lines
10 KiB
Python

import asyncio
import os
import sys
import threading
import uuid
from dataclasses import dataclass
from multiprocessing import Queue
from multiprocessing.connection import wait
from multiprocessing.process import BaseProcess
from typing import (Any, Callable, Dict, Generic, List, Optional, TextIO,
TypeVar, Union)
import torch
from vllm.logger import init_logger
from vllm.triton_utils.importing import HAS_TRITON
from vllm.utils import _check_multiproc_method, get_mp_context
if HAS_TRITON:
from vllm.triton_utils import maybe_set_triton_cache_manager
logger = init_logger(__name__)
T = TypeVar('T')
_TERMINATE = "TERMINATE" # sentinel
# ANSI color codes
CYAN = '\033[1;36m'
RESET = '\033[0;0m'
JOIN_TIMEOUT_S = 2
@dataclass
class Result(Generic[T]):
"""Result of task dispatched to worker"""
task_id: uuid.UUID
value: Optional[T] = None
exception: Optional[BaseException] = None
class ResultFuture(threading.Event, Generic[T]):
"""Synchronous future for non-async case"""
def __init__(self):
super().__init__()
self.result: Optional[Result[T]] = None
def set_result(self, result: Result[T]):
self.result = result
self.set()
def get(self) -> T:
self.wait()
assert self.result is not None
if self.result.exception is not None:
raise self.result.exception
return self.result.value # type: ignore[return-value]
def _set_future_result(future: Union[ResultFuture, asyncio.Future],
result: Result):
if isinstance(future, ResultFuture):
future.set_result(result)
return
loop = future.get_loop()
if not loop.is_closed():
if result.exception is not None:
loop.call_soon_threadsafe(future.set_exception, result.exception)
else:
loop.call_soon_threadsafe(future.set_result, result.value)
class ResultHandler(threading.Thread):
"""Handle results from all workers (in background thread)"""
def __init__(self) -> None:
super().__init__(daemon=True)
self.result_queue = get_mp_context().Queue()
self.tasks: Dict[uuid.UUID, Union[ResultFuture, asyncio.Future]] = {}
def run(self):
for result in iter(self.result_queue.get, _TERMINATE):
future = self.tasks.pop(result.task_id)
_set_future_result(future, result)
# Ensure that all waiters will receive an exception
for task_id, future in self.tasks.items():
_set_future_result(
future,
Result(task_id=task_id,
exception=ChildProcessError("worker died")))
def close(self):
self.result_queue.put(_TERMINATE)
class WorkerMonitor(threading.Thread):
"""Monitor worker status (in background thread)"""
def __init__(self, workers: List['ProcessWorkerWrapper'],
result_handler: ResultHandler):
super().__init__(daemon=True)
self.workers = workers
self.result_handler = result_handler
self._close = False
def run(self) -> None:
# Blocks until any worker exits
dead_sentinels = wait([w.process.sentinel for w in self.workers])
if not self._close:
self._close = True
# Kill / cleanup all workers
for worker in self.workers:
process = worker.process
if process.sentinel in dead_sentinels:
process.join(JOIN_TIMEOUT_S)
if process.exitcode is not None and process.exitcode != 0:
logger.error("Worker %s pid %s died, exit code: %s",
process.name, process.pid, process.exitcode)
# Cleanup any remaining workers
if logger:
logger.info("Killing local vLLM worker processes")
for worker in self.workers:
worker.kill_worker()
# Must be done after worker task queues are all closed
self.result_handler.close()
for worker in self.workers:
worker.process.join(JOIN_TIMEOUT_S)
def close(self):
if self._close:
return
self._close = True
logger.info("Terminating local vLLM worker processes")
for worker in self.workers:
worker.terminate_worker()
# Must be done after worker task queues are all closed
self.result_handler.close()
class ProcessWorkerWrapper:
"""Local process wrapper for vllm.worker.Worker,
for handling single-node multi-GPU tensor parallel."""
def __init__(self, result_handler: ResultHandler,
worker_factory: Callable[[], Any]) -> None:
self.mp = get_mp_context()
self._task_queue = self.mp.Queue()
self.result_queue = result_handler.result_queue
self.tasks = result_handler.tasks
self.process: BaseProcess = self.mp.Process( # type: ignore[attr-defined]
target=_run_worker_process,
name="VllmWorkerProcess",
kwargs=dict(
worker_factory=worker_factory,
task_queue=self._task_queue,
result_queue=self.result_queue,
),
daemon=True)
self.process.start()
def _enqueue_task(self, future: Union[ResultFuture, asyncio.Future],
method: str, args, kwargs):
task_id = uuid.uuid4()
self.tasks[task_id] = future
try:
self._task_queue.put((task_id, method, args, kwargs))
except SystemExit:
raise
except BaseException as e:
del self.tasks[task_id]
raise ChildProcessError("worker died") from e
def execute_method(self, method: str, *args, **kwargs):
future: ResultFuture = ResultFuture()
self._enqueue_task(future, method, args, kwargs)
return future
async def execute_method_async(self, method: str, *args, **kwargs):
future = asyncio.get_running_loop().create_future()
self._enqueue_task(future, method, args, kwargs)
return await future
def terminate_worker(self):
try:
self._task_queue.put(_TERMINATE)
except ValueError:
self.process.kill()
self._task_queue.close()
def kill_worker(self):
self._task_queue.close()
self.process.kill()
def _run_worker_process(
worker_factory: Callable[[], Any],
task_queue: Queue,
result_queue: Queue,
) -> None:
"""Worker process event loop"""
# Add process-specific prefix to stdout and stderr
process_name = get_mp_context().current_process().name
pid = os.getpid()
_add_prefix(sys.stdout, process_name, pid)
_add_prefix(sys.stderr, process_name, pid)
# Initialize worker
worker = worker_factory()
del worker_factory
# Accept tasks from the engine in task_queue
# and return task output in result_queue
logger.info("Worker ready; awaiting tasks")
try:
for items in iter(task_queue.get, _TERMINATE):
output = None
exception = None
task_id, method, args, kwargs = items
try:
executor = getattr(worker, method)
output = executor(*args, **kwargs)
except SystemExit:
raise
except KeyboardInterrupt:
break
except BaseException as e:
logger.exception(
"Exception in worker %s while processing method %s.",
process_name, method)
exception = e
result_queue.put(
Result(task_id=task_id, value=output, exception=exception))
except KeyboardInterrupt:
pass
except Exception:
logger.exception("Worker failed")
logger.info("Worker exiting")
def _add_prefix(file: TextIO, worker_name: str, pid: int) -> None:
"""Prepend each output line with process-specific prefix"""
prefix = f"{CYAN}({worker_name} pid={pid}){RESET} "
file_write = file.write
def write_with_prefix(s: str):
if not s:
return
if file.start_new_line: # type: ignore[attr-defined]
file_write(prefix)
idx = 0
while (next_idx := s.find('\n', idx)) != -1:
next_idx += 1
file_write(s[idx:next_idx])
if next_idx == len(s):
file.start_new_line = True # type: ignore[attr-defined]
return
file_write(prefix)
idx = next_idx
file_write(s[idx:])
file.start_new_line = False # type: ignore[attr-defined]
file.start_new_line = True # type: ignore[attr-defined]
file.write = write_with_prefix # type: ignore[method-assign]
def set_multiprocessing_worker_envs(parallel_config):
""" Set up environment variables that should be used when there are workers
in a multiprocessing environment. This should be called by the parent
process before worker processes are created"""
_check_multiproc_method()
# Configure thread parallelism if OMP_NUM_THREADS isn't set
#
# Helps to avoid CPU contention. The default of spawning a thread per
# core combined with multiprocessing for each GPU can have a negative
# impact on performance. The contention is amplified when running in a
# container where CPU limits can cause throttling.
default_omp_num_threads = 1
if "OMP_NUM_THREADS" not in os.environ and (
current_parallelism :=
torch.get_num_threads()) > default_omp_num_threads:
logger.warning(
"Reducing Torch parallelism from %d threads to %d to avoid "
"unnecessary CPU contention. Set OMP_NUM_THREADS in the "
"external environment to tune this value as needed.",
current_parallelism, default_omp_num_threads)
os.environ["OMP_NUM_THREADS"] = str(default_omp_num_threads)
torch.set_num_threads(default_omp_num_threads)
# workaround for https://github.com/vllm-project/vllm/issues/6103
if HAS_TRITON and parallel_config.world_size > 1:
maybe_set_triton_cache_manager()