mirror of
https://git.datalinker.icu/vllm-project/vllm.git
synced 2025-12-13 05:25:01 +08:00
114 lines
4.5 KiB
Python
114 lines
4.5 KiB
Python
import inspect
|
|
from typing import Dict, List, Union
|
|
|
|
import torch
|
|
|
|
import vllm.envs as envs
|
|
from vllm.compilation.levels import CompilationLevel
|
|
from vllm.compilation.wrapper import TorchCompileWrapperWithCustomDispatcher
|
|
from vllm.sequence import IntermediateTensors
|
|
from vllm.utils import supports_dynamo
|
|
|
|
|
|
def support_torch_compile(dynamic_arg_dims: Dict[str, Union[int, List[int]]]):
|
|
"""
|
|
A decorator to add support for compiling the forward method of a class.
|
|
|
|
`dynamic_arg_dims` is a dictionary that maps argument names to the dynamic
|
|
dimensions of the argument. The dynamic dimensions can be either a single
|
|
integer or a list of integers.
|
|
|
|
Depending on the value of arguments:
|
|
|
|
- if it is a single integer, the corresponding dimension of the argument
|
|
will be marked as dynamic.
|
|
- if it is `None`, ignored.
|
|
- if it is `IntermediateTensors`, all the tensors in the intermediate
|
|
tensors will be marked as dynamic.
|
|
- otherwise, it will raise an error.
|
|
|
|
NOTE: if an argument is `None`, it should always be passed as `None` during
|
|
the lifetime of the model, otherwise, it cannot be captured as a single
|
|
computation graph.
|
|
"""
|
|
|
|
def cls_decorator_helper(cls: type):
|
|
# helper to pass `dynamic_arg_dims`` to `_support_torch_compile``
|
|
# to avoid too much indentation for `_support_torch_compile``
|
|
sig = inspect.signature(cls.forward)
|
|
for k in dynamic_arg_dims:
|
|
if k not in sig.parameters:
|
|
raise ValueError(
|
|
f"Argument {k} not found in the forward method of {cls}")
|
|
return _support_torch_compile(cls, dynamic_arg_dims)
|
|
|
|
return cls_decorator_helper
|
|
|
|
|
|
def _support_torch_compile(cls: type,
|
|
dynamic_arg_dims: Dict[str, Union[int, List[int]]]):
|
|
"""
|
|
A decorator to add support for compiling the forward method of a class.
|
|
"""
|
|
|
|
# for CompilationLevel.DYNAMO_AS_IS , the upper level model runner
|
|
# will handle the compilation, so we don't need to do anything here.
|
|
if envs.VLLM_TORCH_COMPILE_LEVEL in [
|
|
CompilationLevel.NO_COMPILATION, CompilationLevel.DYNAMO_AS_IS
|
|
] or not supports_dynamo():
|
|
return cls
|
|
|
|
# take care of method resolution order
|
|
# make sure super().__init__ is called on the base class
|
|
# other than TorchCompileWrapperWithCustomDispatcher
|
|
cls.__bases__ = cls.__bases__ + (TorchCompileWrapperWithCustomDispatcher, )
|
|
|
|
old_init = cls.__init__
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
old_init(self, *args, **kwargs)
|
|
TorchCompileWrapperWithCustomDispatcher.__init__(self)
|
|
|
|
cls.__init__ = __init__
|
|
|
|
def __call__(self, *args, **kwargs):
|
|
# torch.compiler.is_compiling() means we are inside the compilation
|
|
# e.g. TPU has the compilation logic in model runner, so we don't
|
|
# need to compile the model inside.
|
|
if torch.compiler.is_compiling():
|
|
return self.forward(*args, **kwargs)
|
|
|
|
# the first compilation needs to have dynamic shapes marked
|
|
if len(self.compiled_codes) < 1:
|
|
sig = inspect.signature(self.__class__.forward)
|
|
bound_args = sig.bind(self, *args, **kwargs)
|
|
bound_args.apply_defaults()
|
|
for k, dims in dynamic_arg_dims.items():
|
|
arg = bound_args.arguments.get(k)
|
|
if arg is not None:
|
|
if isinstance(arg, torch.Tensor):
|
|
torch._dynamo.mark_dynamic(arg, dims)
|
|
elif isinstance(arg, IntermediateTensors):
|
|
for tensor in arg.tensors.values():
|
|
torch._dynamo.mark_dynamic(tensor, dims)
|
|
else:
|
|
raise ValueError(
|
|
"Unsupported dynamic dimensions"
|
|
f" {dims} for argument {k} with type {type(arg)}.")
|
|
|
|
# if we don't use custom dispatcher, we can directly call the
|
|
# compiled function and let torch.compile handle the dispatching,
|
|
# with the overhead of guard evaluation and recompilation.
|
|
if len(self.compiled_codes) < 1 or not self.use_custom_dispatcher:
|
|
return self.compiled_callable(*args, **kwargs)
|
|
|
|
# usually, capturing the model once is enough, and then we can
|
|
# dispatch to the compiled code directly, without going through
|
|
# the Dynamo guard mechanism.
|
|
with self.dispatch_to_code(0):
|
|
model_output = self.forward(*args, **kwargs)
|
|
return model_output
|
|
|
|
cls.__call__ = __call__
|
|
return cls
|