mirror of
https://git.datalinker.icu/vllm-project/vllm.git
synced 2025-12-13 22:04:58 +08:00
157 lines
6.4 KiB
Python
157 lines
6.4 KiB
Python
# SPDX-License-Identifier: Apache-2.0
|
|
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
|
"""Rotary Positional Embeddings Base Class."""
|
|
from typing import Optional
|
|
|
|
import torch
|
|
|
|
from vllm.model_executor.custom_op import CustomOp
|
|
|
|
from .common import apply_rotary_emb_torch
|
|
|
|
|
|
@CustomOp.register("rotary_embedding")
|
|
class RotaryEmbedding(CustomOp):
|
|
"""Original rotary positional embedding."""
|
|
|
|
def __init__(
|
|
self,
|
|
head_size: int,
|
|
rotary_dim: int,
|
|
max_position_embeddings: int,
|
|
base: float,
|
|
is_neox_style: bool,
|
|
dtype: torch.dtype,
|
|
) -> None:
|
|
super().__init__()
|
|
self.head_size = head_size
|
|
self.rotary_dim = rotary_dim
|
|
self.max_position_embeddings = max_position_embeddings
|
|
self.base = base
|
|
self.is_neox_style = is_neox_style
|
|
self.dtype = dtype
|
|
# TODO(mgoin): disabled for now due to failures
|
|
# Flashinfer only supports head_size=64, 128, 256, 512.
|
|
# https://github.com/flashinfer-ai/flashinfer/blob/ebfd655efe830048dba5d582aaa61d61d1cf9a87/include/flashinfer/utils.cuh#L174-L202
|
|
# self.use_flashinfer = (self.enabled()
|
|
# and dtype in (torch.float16, torch.bfloat16)
|
|
# and current_platform.is_cuda()
|
|
# and has_flashinfer()
|
|
# and self.head_size in [64, 128, 256, 512])
|
|
self.use_flashinfer = False
|
|
|
|
cache = self._compute_cos_sin_cache()
|
|
if not self.use_flashinfer:
|
|
cache = cache.to(dtype)
|
|
self.cos_sin_cache: torch.Tensor
|
|
self.register_buffer("cos_sin_cache", cache, persistent=False)
|
|
|
|
def _compute_inv_freq(self, base: float) -> torch.Tensor:
|
|
"""Compute the inverse frequency."""
|
|
# NOTE(woosuk): To exactly match the HF implementation, we need to
|
|
# use CPU to compute the cache and then move it to GPU. However, we
|
|
# create the cache on GPU for faster initialization. This may cause
|
|
# a slight numerical difference between the HF implementation and ours.
|
|
inv_freq = 1.0 / (base**(torch.arange(
|
|
0, self.rotary_dim, 2, dtype=torch.float) / self.rotary_dim))
|
|
return inv_freq
|
|
|
|
def _compute_cos_sin_cache(self) -> torch.Tensor:
|
|
"""Compute the cos and sin cache."""
|
|
inv_freq = self._compute_inv_freq(self.base)
|
|
t = torch.arange(self.max_position_embeddings, dtype=torch.float)
|
|
|
|
freqs = torch.einsum("i,j -> ij", t, inv_freq)
|
|
cos = freqs.cos()
|
|
sin = freqs.sin()
|
|
cache = torch.cat((cos, sin), dim=-1)
|
|
return cache
|
|
|
|
def _match_cos_sin_cache_dtype(self, query: torch.Tensor) -> None:
|
|
# __setattr__ in nn.Module (called by `self.cos_sin_cache = ...`)
|
|
# is expensive, so avoid calling it if possible
|
|
if self.cos_sin_cache.device != query.device or \
|
|
self.cos_sin_cache.dtype != query.dtype:
|
|
self.cos_sin_cache = self.cos_sin_cache.to(query.device,
|
|
dtype=query.dtype)
|
|
|
|
def forward_native(
|
|
self,
|
|
positions: torch.Tensor,
|
|
query: torch.Tensor,
|
|
key: Optional[torch.Tensor] = None,
|
|
) -> tuple[torch.Tensor, Optional[torch.Tensor]]:
|
|
"""A PyTorch-native implementation of forward()."""
|
|
positions = positions.flatten()
|
|
num_tokens = positions.shape[0]
|
|
cos_sin = self.cos_sin_cache.index_select(0, positions)
|
|
cos, sin = cos_sin.chunk(2, dim=-1)
|
|
|
|
query_shape = query.shape
|
|
query = query.view(num_tokens, -1, self.head_size)
|
|
query_rot = query[..., :self.rotary_dim]
|
|
query_pass = query[..., self.rotary_dim:]
|
|
query_rot = apply_rotary_emb_torch(query_rot, cos, sin,
|
|
self.is_neox_style)
|
|
query = torch.cat((query_rot, query_pass), dim=-1).reshape(query_shape)
|
|
|
|
# key may be None in some cases, e.g. cross-layer KV sharing
|
|
if key is not None:
|
|
key_shape = key.shape
|
|
key = key.view(num_tokens, -1, self.head_size)
|
|
key_rot = key[..., :self.rotary_dim]
|
|
key_pass = key[..., self.rotary_dim:]
|
|
key_rot = apply_rotary_emb_torch(key_rot, cos, sin,
|
|
self.is_neox_style)
|
|
key = torch.cat((key_rot, key_pass), dim=-1).reshape(key_shape)
|
|
return query, key
|
|
|
|
def forward_cuda(
|
|
self,
|
|
positions: torch.Tensor,
|
|
query: torch.Tensor,
|
|
key: Optional[torch.Tensor] = None,
|
|
) -> tuple[torch.Tensor, Optional[torch.Tensor]]:
|
|
if self.use_flashinfer:
|
|
torch.ops.vllm.flashinfer_rotary_embedding(positions, query, key,
|
|
self.head_size,
|
|
self.cos_sin_cache,
|
|
self.is_neox_style)
|
|
return query, key
|
|
|
|
from vllm import _custom_ops as ops
|
|
|
|
self._match_cos_sin_cache_dtype(query)
|
|
# ops.rotary_embedding() is an in-place operation
|
|
# that updates the query and key tensors.
|
|
ops.rotary_embedding(positions, query, key, self.head_size,
|
|
self.cos_sin_cache, self.is_neox_style)
|
|
return query, key
|
|
|
|
def forward_xpu(
|
|
self,
|
|
positions: torch.Tensor,
|
|
query: torch.Tensor,
|
|
key: Optional[torch.Tensor] = None,
|
|
) -> tuple[torch.Tensor, Optional[torch.Tensor]]:
|
|
from vllm._ipex_ops import ipex_ops as ops
|
|
|
|
self._match_cos_sin_cache_dtype(query)
|
|
# ops.rotary_embedding() is an in-place operation
|
|
# that updates the query and key tensors.
|
|
if key is None:
|
|
# XPU kernel doesn't support key=None so fall back to native impl
|
|
# TODO(sarckk): add support for optional key in
|
|
# ipex.llm.functional.rotary_embedding_batched
|
|
return self.forward_native(positions, query, key)
|
|
else:
|
|
ops.rotary_embedding(positions, query, key, self.head_size,
|
|
self.cos_sin_cache, self.is_neox_style)
|
|
return query, key
|
|
|
|
def extra_repr(self) -> str:
|
|
s = f"head_size={self.head_size}, rotary_dim={self.rotary_dim}"
|
|
s += f", max_position_embeddings={self.max_position_embeddings}"
|
|
s += f", base={self.base}, is_neox_style={self.is_neox_style}"
|
|
return s
|