Michael Goin e08a3a3fdb
[CI Failure] Disable FlashInfer RoPE to unblock CI (#25299)
Signed-off-by: mgoin <mgoin64@gmail.com>
2025-09-20 08:16:56 +00:00

157 lines
6.4 KiB
Python

# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
"""Rotary Positional Embeddings Base Class."""
from typing import Optional
import torch
from vllm.model_executor.custom_op import CustomOp
from .common import apply_rotary_emb_torch
@CustomOp.register("rotary_embedding")
class RotaryEmbedding(CustomOp):
"""Original rotary positional embedding."""
def __init__(
self,
head_size: int,
rotary_dim: int,
max_position_embeddings: int,
base: float,
is_neox_style: bool,
dtype: torch.dtype,
) -> None:
super().__init__()
self.head_size = head_size
self.rotary_dim = rotary_dim
self.max_position_embeddings = max_position_embeddings
self.base = base
self.is_neox_style = is_neox_style
self.dtype = dtype
# TODO(mgoin): disabled for now due to failures
# Flashinfer only supports head_size=64, 128, 256, 512.
# https://github.com/flashinfer-ai/flashinfer/blob/ebfd655efe830048dba5d582aaa61d61d1cf9a87/include/flashinfer/utils.cuh#L174-L202
# self.use_flashinfer = (self.enabled()
# and dtype in (torch.float16, torch.bfloat16)
# and current_platform.is_cuda()
# and has_flashinfer()
# and self.head_size in [64, 128, 256, 512])
self.use_flashinfer = False
cache = self._compute_cos_sin_cache()
if not self.use_flashinfer:
cache = cache.to(dtype)
self.cos_sin_cache: torch.Tensor
self.register_buffer("cos_sin_cache", cache, persistent=False)
def _compute_inv_freq(self, base: float) -> torch.Tensor:
"""Compute the inverse frequency."""
# NOTE(woosuk): To exactly match the HF implementation, we need to
# use CPU to compute the cache and then move it to GPU. However, we
# create the cache on GPU for faster initialization. This may cause
# a slight numerical difference between the HF implementation and ours.
inv_freq = 1.0 / (base**(torch.arange(
0, self.rotary_dim, 2, dtype=torch.float) / self.rotary_dim))
return inv_freq
def _compute_cos_sin_cache(self) -> torch.Tensor:
"""Compute the cos and sin cache."""
inv_freq = self._compute_inv_freq(self.base)
t = torch.arange(self.max_position_embeddings, dtype=torch.float)
freqs = torch.einsum("i,j -> ij", t, inv_freq)
cos = freqs.cos()
sin = freqs.sin()
cache = torch.cat((cos, sin), dim=-1)
return cache
def _match_cos_sin_cache_dtype(self, query: torch.Tensor) -> None:
# __setattr__ in nn.Module (called by `self.cos_sin_cache = ...`)
# is expensive, so avoid calling it if possible
if self.cos_sin_cache.device != query.device or \
self.cos_sin_cache.dtype != query.dtype:
self.cos_sin_cache = self.cos_sin_cache.to(query.device,
dtype=query.dtype)
def forward_native(
self,
positions: torch.Tensor,
query: torch.Tensor,
key: Optional[torch.Tensor] = None,
) -> tuple[torch.Tensor, Optional[torch.Tensor]]:
"""A PyTorch-native implementation of forward()."""
positions = positions.flatten()
num_tokens = positions.shape[0]
cos_sin = self.cos_sin_cache.index_select(0, positions)
cos, sin = cos_sin.chunk(2, dim=-1)
query_shape = query.shape
query = query.view(num_tokens, -1, self.head_size)
query_rot = query[..., :self.rotary_dim]
query_pass = query[..., self.rotary_dim:]
query_rot = apply_rotary_emb_torch(query_rot, cos, sin,
self.is_neox_style)
query = torch.cat((query_rot, query_pass), dim=-1).reshape(query_shape)
# key may be None in some cases, e.g. cross-layer KV sharing
if key is not None:
key_shape = key.shape
key = key.view(num_tokens, -1, self.head_size)
key_rot = key[..., :self.rotary_dim]
key_pass = key[..., self.rotary_dim:]
key_rot = apply_rotary_emb_torch(key_rot, cos, sin,
self.is_neox_style)
key = torch.cat((key_rot, key_pass), dim=-1).reshape(key_shape)
return query, key
def forward_cuda(
self,
positions: torch.Tensor,
query: torch.Tensor,
key: Optional[torch.Tensor] = None,
) -> tuple[torch.Tensor, Optional[torch.Tensor]]:
if self.use_flashinfer:
torch.ops.vllm.flashinfer_rotary_embedding(positions, query, key,
self.head_size,
self.cos_sin_cache,
self.is_neox_style)
return query, key
from vllm import _custom_ops as ops
self._match_cos_sin_cache_dtype(query)
# ops.rotary_embedding() is an in-place operation
# that updates the query and key tensors.
ops.rotary_embedding(positions, query, key, self.head_size,
self.cos_sin_cache, self.is_neox_style)
return query, key
def forward_xpu(
self,
positions: torch.Tensor,
query: torch.Tensor,
key: Optional[torch.Tensor] = None,
) -> tuple[torch.Tensor, Optional[torch.Tensor]]:
from vllm._ipex_ops import ipex_ops as ops
self._match_cos_sin_cache_dtype(query)
# ops.rotary_embedding() is an in-place operation
# that updates the query and key tensors.
if key is None:
# XPU kernel doesn't support key=None so fall back to native impl
# TODO(sarckk): add support for optional key in
# ipex.llm.functional.rotary_embedding_batched
return self.forward_native(positions, query, key)
else:
ops.rotary_embedding(positions, query, key, self.head_size,
self.cos_sin_cache, self.is_neox_style)
return query, key
def extra_repr(self) -> str:
s = f"head_size={self.head_size}, rotary_dim={self.rotary_dim}"
s += f", max_position_embeddings={self.max_position_embeddings}"
s += f", base={self.base}, is_neox_style={self.is_neox_style}"
return s