vllm/tests/models/language/pooling/embed_utils.py
wang.yuqi bd98842c8a
[CI] Add PPL test for generation models (#24485)
Signed-off-by: wang.yuqi <noooop@126.com>
2025-09-10 06:16:39 -07:00

70 lines
2.4 KiB
Python

# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
from collections.abc import Sequence
from typing import Optional
import pytest
from tests.conftest import HfRunner
from tests.models.utils import (EmbedModelInfo, check_embeddings_close,
matryoshka_fy)
def run_embedding_correctness_test(
hf_model: "HfRunner",
inputs: list[str],
vllm_outputs: Sequence[list[float]],
dimensions: Optional[int] = None,
):
hf_outputs = hf_model.encode(inputs)
if dimensions:
hf_outputs = matryoshka_fy(hf_outputs, dimensions)
check_embeddings_close(
embeddings_0_lst=hf_outputs,
embeddings_1_lst=vllm_outputs,
name_0="hf",
name_1="vllm",
tol=1e-2,
)
def correctness_test_embed_models(hf_runner,
vllm_runner,
model_info: EmbedModelInfo,
example_prompts,
vllm_extra_kwargs=None,
hf_model_callback=None):
pytest.skip("Debug only, ci prefers to use mteb test.")
# The example_prompts has ending "\n", for example:
# "Write a short story about a robot that dreams for the first time.\n"
# sentence_transformers will strip the input texts, see:
# https://github.com/UKPLab/sentence-transformers/blob/v3.1.1/sentence_transformers/models/Transformer.py#L159
# This makes the input_ids different between hf_model and vllm_model.
# So we need to strip the input texts to avoid test failing.
example_prompts = [str(s).strip() for s in example_prompts]
vllm_extra_kwargs = vllm_extra_kwargs or {}
vllm_extra_kwargs["dtype"] = model_info.dtype
if model_info.hf_overrides is not None:
vllm_extra_kwargs["hf_overrides"] = model_info.hf_overrides
with vllm_runner(model_info.name,
runner="pooling",
max_model_len=None,
**vllm_extra_kwargs) as vllm_model:
vllm_outputs = vllm_model.embed(example_prompts)
with hf_runner(
model_info.name,
dtype=model_info.hf_dtype,
is_sentence_transformer=True,
) as hf_model:
if hf_model_callback is not None:
hf_model_callback(hf_model)
run_embedding_correctness_test(hf_model, example_prompts, vllm_outputs)