vllm/tests/models/language/pooling/test_mm_classifier_conversion.py
Maximilien de Bayser e090b7b45b
Enable conversion of multimodal models to pooling tasks (#24451)
Signed-off-by: Max de Bayser <mbayser@br.ibm.com>
2025-09-12 03:30:41 +00:00

114 lines
3.4 KiB
Python

# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
from vllm.platforms import current_platform
def test_idefics_multimodal(
vllm_runner,
monkeypatch,
) -> None:
if current_platform.is_rocm():
# ROCm Triton FA does not currently support sliding window attention
# switch to use ROCm CK FA backend
monkeypatch.setenv("VLLM_USE_TRITON_FLASH_ATTN", "False")
prompts = [
"Hello, my name is",
"The president of the United States is",
"The capital of France is",
"The future of AI is",
]
with vllm_runner(model_name="HuggingFaceM4/Idefics3-8B-Llama3",
runner="pooling",
task="classify",
convert="classify",
load_format="dummy",
max_model_len=512,
enforce_eager=True,
tensor_parallel_size=1,
disable_log_stats=True,
dtype="bfloat16") as vllm_model:
llm = vllm_model.get_llm()
outputs = llm.classify(prompts)
for output in outputs:
assert len(output.outputs.probs) == 2
def update_config(config):
config.text_config.update({
"architectures": ["Gemma3ForSequenceClassification"],
"classifier_from_token": ["A", "B", "C", "D", "E"],
"method":
"no_post_processing",
"id2label": {
"A": "Chair",
"B": "Couch",
"C": "Table",
"D": "Bed",
"E": "Cupboard"
},
})
return config
def test_gemma_multimodal(
vllm_runner,
monkeypatch,
) -> None:
if current_platform.is_rocm():
# ROCm Triton FA does not currently support sliding window attention
# switch to use ROCm CK FA backend
monkeypatch.setenv("VLLM_USE_TRITON_FLASH_ATTN", "False")
messages = [{
"role":
"system",
"content":
"""
You are a helpful assistant. You will be given a product description
which may also include an image. Classify the following product into
one of the categories:
A = chair
B = couch
C = table
D = bed
E = cupboard
You'll answer with exactly one letter (A, B, C, D, or E)."""
}, {
"role":
"user",
"content": [{
"type": "image_url",
"image_url": {
"url":
"https://upload.wikimedia.org/wikipedia/commons/c/c6/Set_of_fourteen_side_chairs_MET_DP110780.jpg"
}
}, {
"type": "text",
"text": "A fine 19th century piece of furniture."
}]
}]
with vllm_runner(model_name="google/gemma-3-4b-it",
runner="pooling",
task="classify",
convert="classify",
load_format="auto",
hf_overrides=update_config,
override_pooler_config={"pooling_type": "LAST"},
max_model_len=512,
enforce_eager=True,
tensor_parallel_size=1,
disable_log_stats=True,
dtype="bfloat16") as vllm_model:
llm = vllm_model.get_llm()
prompts = llm.preprocess_chat(messages)
result = llm.classify(prompts)
assert result[0].outputs.probs[0] > 0.95
assert all(c < 0.05 for c in result[0].outputs.probs[1:])