vllm/tests/models/language/pooling/test_multilabel_classification_support.py
wang.yuqi f856c33ce9
[Model] Add multi_label_classification support (#23173)
Signed-off-by: wang.yuqi <noooop@126.com>
2025-08-19 12:54:30 +00:00

34 lines
1.0 KiB
Python

# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import pytest
import torch
from transformers import AutoModelForSequenceClassification
@pytest.mark.parametrize(
"model",
["Rami/multi-label-class-classification-on-github-issues"],
)
@pytest.mark.parametrize("dtype", ["half"])
def test_classify_models(
hf_runner,
vllm_runner,
example_prompts,
model: str,
dtype: str,
) -> None:
with vllm_runner(model, max_model_len=512, dtype=dtype) as vllm_model:
vllm_outputs = vllm_model.classify(example_prompts)
with hf_runner(model,
dtype=dtype,
auto_cls=AutoModelForSequenceClassification) as hf_model:
hf_outputs = hf_model.classify(example_prompts)
for hf_output, vllm_output in zip(hf_outputs, vllm_outputs):
hf_output = torch.tensor(hf_output)
vllm_output = torch.tensor(vllm_output)
assert torch.allclose(hf_output, vllm_output,
1e-3 if dtype == "float" else 1e-2)