mirror of
https://git.datalinker.icu/vllm-project/vllm.git
synced 2025-12-10 02:55:40 +08:00
34 lines
1.0 KiB
Python
34 lines
1.0 KiB
Python
# SPDX-License-Identifier: Apache-2.0
|
|
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
|
import pytest
|
|
import torch
|
|
from transformers import AutoModelForSequenceClassification
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"model",
|
|
["Rami/multi-label-class-classification-on-github-issues"],
|
|
)
|
|
@pytest.mark.parametrize("dtype", ["half"])
|
|
def test_classify_models(
|
|
hf_runner,
|
|
vllm_runner,
|
|
example_prompts,
|
|
model: str,
|
|
dtype: str,
|
|
) -> None:
|
|
with vllm_runner(model, max_model_len=512, dtype=dtype) as vllm_model:
|
|
vllm_outputs = vllm_model.classify(example_prompts)
|
|
|
|
with hf_runner(model,
|
|
dtype=dtype,
|
|
auto_cls=AutoModelForSequenceClassification) as hf_model:
|
|
hf_outputs = hf_model.classify(example_prompts)
|
|
|
|
for hf_output, vllm_output in zip(hf_outputs, vllm_outputs):
|
|
hf_output = torch.tensor(hf_output)
|
|
vllm_output = torch.tensor(vllm_output)
|
|
|
|
assert torch.allclose(hf_output, vllm_output,
|
|
1e-3 if dtype == "float" else 1e-2)
|