wang.yuqi fd1ce98cdd
[CI] Split mteb test from Language Models Test (#24634)
Signed-off-by: wang.yuqi <noooop@126.com>
2025-09-11 06:37:51 -07:00

376 lines
13 KiB
Python

# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import tempfile
from collections.abc import Sequence
from typing import Optional
import mteb
import numpy as np
import pytest
import requests
import torch
from tests.models.utils import (EmbedModelInfo, RerankModelInfo,
check_embeddings_close)
# Most embedding models on the STS12 task (See #17175):
# - Model implementation and minor changes in tensor dtype
# results in differences less than 1e-4
# - Different model results in differences more than 1e-3
# 1e-4 is a good tolerance threshold
MTEB_EMBED_TASKS = ["STS12"]
MTEB_EMBED_TOL = 1e-4
# See #19344
MTEB_RERANK_TASKS = ["NFCorpus"]
MTEB_RERANK_LANGS = ["en"]
MTEB_RERANK_TOL = 2e-3
class VllmMtebEncoder(mteb.Encoder):
def __init__(self, vllm_model):
super().__init__()
self.llm = vllm_model
self.rng = np.random.default_rng(seed=42)
def encode(
self,
sentences: Sequence[str],
*args,
**kwargs,
) -> np.ndarray:
# Hoping to discover potential scheduling
# issues by randomizing the order.
r = self.rng.permutation(len(sentences))
sentences = [sentences[i] for i in r]
outputs = self.llm.embed(sentences, use_tqdm=False)
embeds = np.array(outputs)
embeds = embeds[np.argsort(r)]
return embeds
def predict(
self,
sentences: list[tuple[str, str,
Optional[str]]], # query, corpus, prompt
*args,
**kwargs,
) -> np.ndarray:
r = self.rng.permutation(len(sentences))
sentences = [sentences[i] for i in r]
queries = [s[0] for s in sentences]
corpus = [s[1] for s in sentences]
outputs = self.llm.score(queries,
corpus,
truncate_prompt_tokens=-1,
use_tqdm=False)
scores = np.array(outputs)
scores = scores[np.argsort(r)]
return scores
class OpenAIClientMtebEncoder(mteb.Encoder):
def __init__(self, model_name: str, client):
super().__init__()
self.model_name = model_name
self.client = client
self.rng = np.random.default_rng(seed=42)
def encode(self, sentences: Sequence[str], *args, **kwargs) -> np.ndarray:
# Hoping to discover potential scheduling
# issues by randomizing the order.
r = self.rng.permutation(len(sentences))
sentences = [sentences[i] for i in r]
embeddings = self.client.embeddings.create(model=self.model_name,
input=sentences)
outputs = [d.embedding for d in embeddings.data]
embeds = np.array(outputs)
embeds = embeds[np.argsort(r)]
return embeds
class ScoreClientMtebEncoder(mteb.Encoder):
def __init__(self, model_name: str, url):
super().__init__()
self.model_name = model_name
self.url = url
self.rng = np.random.default_rng(seed=42)
def predict(
self,
sentences: list[tuple[str, str,
Optional[str]]], # query, corpus, prompt
*args,
**kwargs,
) -> np.ndarray:
r = self.rng.permutation(len(sentences))
sentences = [sentences[i] for i in r]
outputs = []
for query, corpus, prompt in sentences:
outputs.append(self.get_score(query, corpus))
scores = np.array(outputs)
scores = scores[np.argsort(r)]
return scores
def get_score(self, query, corpus):
response = requests.post(self.url,
json={
"model": self.model_name,
"text_1": query,
"text_2": corpus,
"truncate_prompt_tokens": -1,
}).json()
return response['data'][0]["score"]
class RerankClientMtebEncoder(ScoreClientMtebEncoder):
def get_score(self, query, corpus):
response = requests.post(self.url,
json={
"model": self.model_name,
"query": query,
"documents": [corpus],
"truncate_prompt_tokens": -1,
}).json()
return response['results'][0]["relevance_score"]
def run_mteb_embed_task(encoder, tasks):
tasks = mteb.get_tasks(tasks=tasks)
evaluation = mteb.MTEB(tasks=tasks)
results = evaluation.run(
encoder,
verbosity=0,
output_folder=None,
encode_kwargs={
"show_progress_bar": False,
},
)
main_score = results[0].scores["test"][0]["main_score"]
return main_score
def mteb_test_embed_models(hf_runner,
vllm_runner,
model_info: EmbedModelInfo,
vllm_extra_kwargs=None,
hf_model_callback=None,
atol=MTEB_EMBED_TOL):
# A model family has many models with the same architecture,
# and we don't need to test each one.
if not model_info.enable_test:
pytest.skip("Skipping test.")
# Test embed_dims, isnan and whether to use normalize
example_prompts = ["The chef prepared a delicious meal." * 1000]
# Allow vllm to test using the given dtype, such as float32
vllm_extra_kwargs = vllm_extra_kwargs or {}
vllm_extra_kwargs["dtype"] = model_info.dtype
# Allow vllm to test using hf_overrides
if model_info.hf_overrides is not None:
vllm_extra_kwargs["hf_overrides"] = model_info.hf_overrides
with vllm_runner(model_info.name,
runner="pooling",
max_model_len=None,
enforce_eager=True,
**vllm_extra_kwargs) as vllm_model:
model_config = vllm_model.llm.llm_engine.model_config
# Confirm whether vllm is using the correct architecture
if model_info.architecture:
assert model_info.architecture in model_config.architectures
# Confirm whether vllm uses the correct default_pooling_type, which
# relates to whether chunked prefill and prefix caching are enabled
assert (model_config._model_info.default_pooling_type ==
model_info.default_pooling_type)
vllm_main_score = run_mteb_embed_task(VllmMtebEncoder(vllm_model),
MTEB_EMBED_TASKS)
vllm_dtype = vllm_model.llm.llm_engine.model_config.dtype
# Test embed_dims, isnan and whether to use normalize
vllm_outputs = vllm_model.embed(example_prompts,
truncate_prompt_tokens=-1)
assert not torch.any(torch.isnan(torch.tensor(vllm_outputs)))
# Accelerate mteb test by setting
# SentenceTransformers mteb score to a constant
if model_info.mteb_score is None:
with hf_runner(model_info.name,
is_sentence_transformer=True,
dtype=model_info.hf_dtype) as hf_model:
# e.g. setting default parameters for the encode method of hf_runner
if hf_model_callback is not None:
hf_model_callback(hf_model)
st_main_score = run_mteb_embed_task(hf_model, MTEB_EMBED_TASKS)
st_dtype = next(hf_model.model.parameters()).dtype
# Test embed_dims and whether to use normalize
hf_outputs = hf_model.encode(example_prompts)
check_embeddings_close(
embeddings_0_lst=hf_outputs,
embeddings_1_lst=vllm_outputs,
name_0="hf",
name_1="vllm",
tol=1e-2,
)
else:
st_main_score = model_info.mteb_score
st_dtype = "Constant"
print("Model:", model_info.name)
print("VLLM:", vllm_dtype, vllm_main_score)
print("SentenceTransformers:", st_dtype, st_main_score)
print("Difference:", st_main_score - vllm_main_score)
# We are not concerned that the vllm mteb results are better
# than SentenceTransformers, so we only perform one-sided testing.
assert st_main_score - vllm_main_score < atol
def run_mteb_rerank(cross_encoder, tasks, languages):
with tempfile.TemporaryDirectory() as results_folder:
bm25s = mteb.get_model("bm25s")
tasks = mteb.get_tasks(tasks=tasks, languages=languages)
subset = "default"
eval_splits = ["test"]
evaluation = mteb.MTEB(tasks=tasks)
evaluation.run(
bm25s,
verbosity=0,
eval_splits=eval_splits,
save_predictions=True,
output_folder=f"{results_folder}/stage1",
encode_kwargs={"show_progress_bar": False},
)
results = evaluation.run(
cross_encoder,
verbosity=0,
eval_splits=eval_splits,
top_k=10,
save_predictions=True,
output_folder=f"{results_folder}/stage2",
previous_results=
f"{results_folder}/stage1/NFCorpus_{subset}_predictions.json",
encode_kwargs={"show_progress_bar": False},
)
main_score = results[0].scores["test"][0]["main_score"]
return main_score
def mteb_test_rerank_models_hf(hf_runner,
model_name,
hf_dtype="float32",
hf_model_callback=None):
with hf_runner(model_name, is_cross_encoder=True,
dtype=hf_dtype) as hf_model:
original_predict = hf_model.predict
def _predict(
sentences: list[tuple[str, str,
Optional[str]]], # query, corpus, prompt
*args,
**kwargs,
):
# vllm and st both remove the prompt, fair comparison.
prompts = [(s[0], s[1]) for s in sentences]
return original_predict(prompts, *args, **kwargs, batch_size=8)
hf_model.predict = _predict
hf_model.original_predict = original_predict
if hf_model_callback is not None:
hf_model_callback(hf_model)
st_main_score = run_mteb_rerank(hf_model,
tasks=MTEB_RERANK_TASKS,
languages=MTEB_RERANK_LANGS)
st_dtype = next(hf_model.model.model.parameters()).dtype
return st_main_score, st_dtype
def mteb_test_rerank_models(hf_runner,
vllm_runner,
model_info: RerankModelInfo,
vllm_extra_kwargs=None,
hf_model_callback=None,
vllm_mteb_encoder=VllmMtebEncoder,
atol=MTEB_RERANK_TOL):
# A model family has many models with the same architecture,
# and we don't need to test each one.
if not model_info.enable_test:
pytest.skip("Skipping test.")
# Allow vllm to test using the given dtype, such as float32
vllm_extra_kwargs = vllm_extra_kwargs or {}
vllm_extra_kwargs["dtype"] = model_info.dtype
# Allow vllm to test using hf_overrides
if model_info.hf_overrides is not None:
vllm_extra_kwargs["hf_overrides"] = model_info.hf_overrides
with vllm_runner(model_info.name,
runner="pooling",
max_model_len=None,
max_num_seqs=8,
enforce_eager=True,
**vllm_extra_kwargs) as vllm_model:
model_config = vllm_model.llm.llm_engine.model_config
# Confirm whether vllm is using the correct architecture
if model_info.architecture:
assert (model_info.architecture in model_config.architectures)
# Score API is only enabled for num_labels == 1
assert model_config.hf_config.num_labels == 1
# Confirm whether vllm uses the correct default_pooling_type, which
# relates to whether chunked prefill and prefix caching are enabled
assert (model_config._model_info.default_pooling_type ==
model_info.default_pooling_type)
vllm_main_score = run_mteb_rerank(vllm_mteb_encoder(vllm_model),
tasks=MTEB_RERANK_TASKS,
languages=MTEB_RERANK_LANGS)
vllm_dtype = model_config.dtype
# Accelerate mteb test by setting
# SentenceTransformers mteb score to a constant
if model_info.mteb_score is None:
st_main_score, st_dtype = mteb_test_rerank_models_hf(
hf_runner, model_info.name, model_info.hf_dtype, hf_model_callback)
else:
st_main_score = model_info.mteb_score
st_dtype = "Constant"
print("Model:", model_info.name)
print("VLLM:", vllm_dtype, vllm_main_score)
print("SentenceTransformers:", st_dtype, st_main_score)
print("Difference:", st_main_score - vllm_main_score)
# We are not concerned that the vllm mteb results are better
# than SentenceTransformers, so we only perform one-sided testing.
assert st_main_score - vllm_main_score < atol