mirror of
https://git.datalinker.icu/vllm-project/vllm.git
synced 2025-12-09 22:25:32 +08:00
102 lines
3.8 KiB
Python
102 lines
3.8 KiB
Python
# SPDX-License-Identifier: Apache-2.0
|
|
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
|
from typing import Any
|
|
|
|
import pytest
|
|
import torch
|
|
|
|
from tests.conftest import HfRunner
|
|
from tests.models.utils import LASTPoolingRerankModelInfo, RerankModelInfo
|
|
from tests.utils import multi_gpu_test
|
|
|
|
from .mteb_utils import mteb_test_rerank_models
|
|
|
|
qwen3_reranker_hf_overrides = {
|
|
"architectures": ["Qwen3ForSequenceClassification"],
|
|
"classifier_from_token": ["no", "yes"],
|
|
"is_original_qwen3_reranker": True,
|
|
}
|
|
|
|
RERANK_MODELS = [
|
|
LASTPoolingRerankModelInfo("Qwen/Qwen3-Reranker-0.6B",
|
|
architecture="Qwen3ForSequenceClassification",
|
|
mteb_score=0.25736,
|
|
hf_overrides=qwen3_reranker_hf_overrides,
|
|
enable_test=True),
|
|
LASTPoolingRerankModelInfo("Qwen/Qwen3-Reranker-4B",
|
|
architecture="Qwen3ForSequenceClassification",
|
|
hf_overrides=qwen3_reranker_hf_overrides,
|
|
enable_test=False)
|
|
]
|
|
|
|
|
|
class Qwen3RerankerHfRunner(HfRunner):
|
|
|
|
def __init__(self,
|
|
model_name: str,
|
|
dtype: str = "auto",
|
|
*args: Any,
|
|
**kwargs: Any) -> None:
|
|
from transformers import AutoModelForCausalLM, AutoTokenizer
|
|
super().__init__(model_name, dtype, auto_cls=AutoModelForCausalLM)
|
|
|
|
self.tokenizer = AutoTokenizer.from_pretrained(model_name,
|
|
padding_side='left')
|
|
self.token_false_id = self.tokenizer.convert_tokens_to_ids("no")
|
|
self.token_true_id = self.tokenizer.convert_tokens_to_ids("yes")
|
|
|
|
def predict(self, prompts: list[list[str]], *args,
|
|
**kwargs) -> torch.Tensor:
|
|
|
|
def process_inputs(pairs):
|
|
inputs = self.tokenizer(pairs,
|
|
padding=False,
|
|
truncation='longest_first',
|
|
return_attention_mask=False)
|
|
for i, ele in enumerate(inputs['input_ids']):
|
|
inputs['input_ids'][i] = ele
|
|
inputs = self.tokenizer.pad(inputs,
|
|
padding=True,
|
|
return_tensors="pt")
|
|
for key in inputs:
|
|
inputs[key] = inputs[key].to(self.model.device)
|
|
return inputs
|
|
|
|
@torch.no_grad()
|
|
def compute_logits(inputs):
|
|
batch_scores = self.model(**inputs).logits[:, -1, :]
|
|
true_vector = batch_scores[:, self.token_true_id]
|
|
false_vector = batch_scores[:, self.token_false_id]
|
|
batch_scores = torch.stack([false_vector, true_vector], dim=1)
|
|
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
|
|
scores = batch_scores[:, 1].exp()
|
|
return scores
|
|
|
|
scores = []
|
|
for prompt in prompts:
|
|
inputs = process_inputs([prompt])
|
|
score = compute_logits(inputs)
|
|
scores.append(score[0].item())
|
|
return torch.Tensor(scores)
|
|
|
|
|
|
@pytest.mark.parametrize("model_info", RERANK_MODELS)
|
|
def test_rerank_models_mteb(vllm_runner, model_info: RerankModelInfo) -> None:
|
|
|
|
mteb_test_rerank_models(Qwen3RerankerHfRunner, vllm_runner, model_info)
|
|
|
|
|
|
@pytest.mark.parametrize("model_info", RERANK_MODELS)
|
|
@multi_gpu_test(num_gpus=2)
|
|
def test_rerank_models_mteb_tp(vllm_runner,
|
|
model_info: RerankModelInfo) -> None:
|
|
|
|
assert model_info.architecture == "Qwen3ForSequenceClassification"
|
|
|
|
vllm_extra_kwargs: dict[str, Any] = {
|
|
"tensor_parallel_size": 2,
|
|
}
|
|
|
|
mteb_test_rerank_models(Qwen3RerankerHfRunner, vllm_runner, model_info,
|
|
vllm_extra_kwargs)
|