Cyrus Leung 0e741c12e3
[Bugfix] Fix Plamo3 rope handling (#29092)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
Co-authored-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-11-21 11:38:35 +08:00

442 lines
16 KiB
Python

# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
"""Inference-only PLaMo3 model."""
from collections.abc import Iterable
from itertools import islice
from typing import Any
import torch
from torch import nn
from transformers import PretrainedConfig
from vllm.attention.layer import Attention
from vllm.compilation.decorators import support_torch_compile
from vllm.config import VllmConfig
from vllm.distributed import get_tensor_model_parallel_world_size
from vllm.distributed.parallel_state import get_pp_group
from vllm.model_executor.layers.activation import SiluAndMul
from vllm.model_executor.layers.layernorm import RMSNorm
from vllm.model_executor.layers.linear import (
MergedColumnParallelLinear,
QKVParallelLinear,
RowParallelLinear,
)
from vllm.model_executor.layers.logits_processor import LogitsProcessor
from vllm.model_executor.layers.quantization import QuantizationConfig
from vllm.model_executor.layers.rotary_embedding import get_rope
from vllm.model_executor.layers.vocab_parallel_embedding import (
DEFAULT_VOCAB_PADDING_SIZE,
ParallelLMHead,
VocabParallelEmbedding,
)
from vllm.model_executor.model_loader.weight_utils import (
LoaderFunction,
composed_weight_loader,
default_weight_loader,
)
from vllm.model_executor.models.interfaces import SupportsPP
from vllm.model_executor.models.utils import (
AutoWeightsLoader,
extract_layer_index,
make_empty_intermediate_tensors_factory,
make_layers,
maybe_prefix,
)
from vllm.model_executor.utils import set_weight_attrs
from vllm.sequence import IntermediateTensors
# Only used for type hinting.
class Plamo3Config(PretrainedConfig): # type: ignore
model_type: str = "plamo3"
hidden_size: int
num_hidden_layers: int
rms_norm_eps: float
# Attention
num_attention_heads: int
head_dim: int
num_key_value_heads: int
# vllm rename `sliding_window` attr to `interleaved_sliding_window`
# if `sliding_window` is list
interleaved_sliding_window: list[int | None]
sliding_window_pattern: int
rope_parameters: dict[str, Any]
rope_local_theta: int
# MLP
intermediate_size: int
# Tokenizer
vocab_size: int
def rms_norm_weight_loader(offset: float) -> LoaderFunction:
return composed_weight_loader(
default_weight_loader,
lambda x: x + offset,
)
class DenseMLP(nn.Module):
def __init__(
self,
config: Plamo3Config,
quant_config: QuantizationConfig | None = None,
prefix: str = "",
) -> None:
super().__init__()
self.hidden_size = config.hidden_size
self.intermediate_size = config.intermediate_size
self.gate_up_proj = MergedColumnParallelLinear(
self.hidden_size,
[self.intermediate_size] * 2,
bias=False,
prefix=f"{prefix}.gate_up_proj",
quant_config=quant_config,
return_bias=False,
)
self.act = SiluAndMul()
self.down_proj = RowParallelLinear(
self.intermediate_size,
self.hidden_size,
bias=False,
prefix=f"{prefix}.down_proj",
quant_config=quant_config,
return_bias=False,
)
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
h = self.gate_up_proj(hidden_states)
h = self.act(h)
return self.down_proj(h)
class Plamo3AttentionMixer(nn.Module):
def __init__(self, *, vllm_config: VllmConfig, prefix: str = "", **kwargs) -> None:
super().__init__()
config = vllm_config.model_config.hf_config
quant_config = vllm_config.quant_config
self.hidden_size = config.hidden_size
tp_size = get_tensor_model_parallel_world_size()
self.total_num_heads = config.num_attention_heads
assert self.total_num_heads % tp_size == 0
self.num_heads = self.total_num_heads // tp_size
self.total_num_kv_heads = config.num_key_value_heads
if self.total_num_kv_heads >= tp_size:
# Number of KV heads is greater than TP size, so we partition
# the KV heads across multiple tensor parallel GPUs.
assert self.total_num_kv_heads % tp_size == 0
else:
# Number of KV heads is less than TP size, so we replicate
# the KV heads across multiple tensor parallel GPUs.
assert tp_size % self.total_num_kv_heads == 0
self.num_kv_heads = max(1, self.total_num_kv_heads // tp_size)
self.head_dim = config.head_dim
self.q_size = self.num_heads * self.head_dim
self.kv_size = self.num_kv_heads * self.head_dim
self.scaling = self.head_dim**-0.5
self.qkv_proj = QKVParallelLinear(
config.hidden_size,
self.head_dim,
self.total_num_heads,
self.total_num_kv_heads,
bias=False,
quant_config=quant_config,
prefix=f"{prefix}.qkv_proj",
)
self.o_proj = RowParallelLinear(
self.total_num_heads * self.head_dim,
config.hidden_size,
bias=False,
quant_config=quant_config,
prefix=f"{prefix}.o_proj",
)
layer_idx = extract_layer_index(prefix)
layer_type = config.layer_types[layer_idx]
is_sliding = layer_type == "sliding_attention"
# Initialize the rotary embedding.
if layer_type in config.rope_parameters:
# Transformers v5 rope config.
rope_parameters = config.rope_parameters[layer_type]
else:
# Transformers v4 rope config.
# Global attention. Use the values in config.json.
rope_parameters = config.rope_parameters
# Local attention. Override the values in config.json.
if is_sliding:
rope_parameters = dict(
rope_type="default", rope_theta=config.rope_local_theta
)
max_position = config.max_position_embeddings
if hasattr(vllm_config.model_config, "max_model_len") and isinstance(
vllm_config.model_config.max_model_len, int
):
max_position = min(max_position, vllm_config.model_config.max_model_len)
self.rotary_emb = get_rope(
self.head_dim,
rotary_dim=self.head_dim,
max_position=max_position,
rope_parameters=rope_parameters,
)
self.q_norm = RMSNorm(self.head_dim, eps=config.rms_norm_eps)
set_weight_attrs(
self.q_norm.weight, {"weight_loader": rms_norm_weight_loader(offset=1.0)}
)
self.k_norm = RMSNorm(self.head_dim, eps=config.rms_norm_eps)
set_weight_attrs(
self.k_norm.weight, {"weight_loader": rms_norm_weight_loader(offset=1.0)}
)
self.attn = Attention(
self.num_heads,
self.head_dim,
self.scaling,
num_kv_heads=self.num_kv_heads,
cache_config=vllm_config.cache_config,
per_layer_sliding_window=config.interleaved_sliding_window[layer_idx],
prefix=f"{prefix}.attn",
)
def forward(
self,
positions: torch.Tensor,
hidden_states: torch.Tensor,
residual: torch.Tensor | None,
**kwargs: Any,
) -> torch.Tensor:
qkv, _ = self.qkv_proj(hidden_states)
q, k, v = qkv.split([self.q_size, self.kv_size, self.kv_size], dim=-1)
q_shape = q.shape
q = q.reshape(q_shape[:-1] + (q_shape[-1] // self.head_dim, self.head_dim))
q = self.q_norm.forward_native(q).reshape(q_shape)
k_shape = k.shape
k = k.reshape(k_shape[:-1] + (k_shape[-1] // self.head_dim, self.head_dim))
k = self.k_norm.forward_native(k).reshape(k_shape)
q, k = self.rotary_emb(positions, q, k)
attn_output = self.attn(q, k, v)
output, _ = self.o_proj(attn_output)
return output
class Plamo3DecoderLayer(nn.Module):
def __init__(
self, vllm_config: VllmConfig, prefix: str = "", **kwargs: Any
) -> None:
super().__init__()
config = vllm_config.model_config.hf_config
quant_config = vllm_config.quant_config
self.mixer = Plamo3AttentionMixer(
vllm_config=vllm_config,
prefix=f"{prefix}.mixer",
)
self.mlp = DenseMLP(
config=config, quant_config=quant_config, prefix=f"{prefix}.mlp"
)
self.pre_mixer_norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
set_weight_attrs(
self.pre_mixer_norm.weight,
{"weight_loader": rms_norm_weight_loader(offset=1.0)},
)
self.post_mixer_norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
set_weight_attrs(
self.post_mixer_norm.weight,
{"weight_loader": rms_norm_weight_loader(offset=1.0 / 5)},
)
self.pre_mlp_norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
set_weight_attrs(
self.pre_mlp_norm.weight,
{"weight_loader": rms_norm_weight_loader(offset=1.0)},
)
self.post_mlp_norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
set_weight_attrs(
self.post_mlp_norm.weight,
{"weight_loader": rms_norm_weight_loader(offset=1.0 / (5**1.5))},
)
def forward(
self,
positions: torch.Tensor,
hidden_states: torch.Tensor,
residual: torch.Tensor | None,
**kwargs: Any,
) -> tuple[torch.Tensor, torch.Tensor | None]:
if residual is None:
residual = hidden_states
hidden_states = self.pre_mixer_norm(hidden_states)
else:
hidden_states, residual = self.pre_mixer_norm(hidden_states, residual)
hidden_states = self.mixer(
positions=positions, hidden_states=hidden_states, residual=residual
)
hidden_states = self.post_mixer_norm(hidden_states)
# Fully Connected
hidden_states, residual = self.pre_mlp_norm(hidden_states, residual)
hidden_states = self.mlp(hidden_states)
hidden_states = self.post_mlp_norm(hidden_states)
return hidden_states, residual
class Plamo3Decoder(torch.nn.Module):
def __init__(self, vllm_config: VllmConfig, prefix: str = "") -> None:
super().__init__()
num_hidden_layers = vllm_config.model_config.hf_config.num_hidden_layers
self.start_layer, self.end_layer, self.layers = make_layers(
num_hidden_layers,
lambda prefix: Plamo3DecoderLayer(vllm_config, prefix=prefix),
prefix=f"{prefix}.layers",
)
def forward(
self,
positions: torch.Tensor,
hidden_states: torch.Tensor,
residual: torch.Tensor | None,
) -> tuple[torch.Tensor, torch.Tensor | None]:
for layer in islice(self.layers, self.start_layer, self.end_layer):
hidden_states, residual = layer(
positions=positions,
hidden_states=hidden_states,
residual=residual,
)
return hidden_states, residual
@support_torch_compile
class Plamo3Model(nn.Module):
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
super().__init__()
config = vllm_config.model_config.hf_config
self.config = config
self.padding_idx = config.pad_token_id
self.vocab_size = config.vocab_size
self.org_vocab_size = config.vocab_size
self.embed_tokens = VocabParallelEmbedding(
self.vocab_size,
config.hidden_size,
org_num_embeddings=config.vocab_size,
prefix=f"{prefix}.embed_tokens",
)
self.make_empty_intermediate_tensors = make_empty_intermediate_tensors_factory(
["hidden_states", "residual"], config.hidden_size
)
self.layers = Plamo3Decoder(vllm_config, prefix=f"{prefix}.layers")
self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
set_weight_attrs(
self.norm.weight,
{"weight_loader": rms_norm_weight_loader(offset=1.0)},
)
def embed_input_ids(self, input_ids: torch.Tensor) -> torch.Tensor:
return self.embed_tokens(input_ids)
def forward(
self,
input_ids: torch.Tensor,
positions: torch.Tensor,
intermediate_tensors: IntermediateTensors | None = None,
inputs_embeds: torch.Tensor | None = None,
) -> torch.Tensor:
if get_pp_group().is_first_rank:
if inputs_embeds is not None:
hidden_states = inputs_embeds
else:
hidden_states = self.embed_input_ids(input_ids)
residual = None
else:
assert intermediate_tensors is not None
hidden_states = intermediate_tensors["hidden_states"]
residual = intermediate_tensors["residual"]
hidden_states, residual = self.layers(
positions=positions, hidden_states=hidden_states, residual=residual
)
if not get_pp_group().is_last_rank:
return IntermediateTensors(
{"hidden_states": hidden_states, "residual": residual}
)
hidden_states, _ = self.norm(hidden_states, residual)
return hidden_states
class Plamo3ForCausalLM(nn.Module, SupportsPP):
packed_modules_mapping = {
"qkv_proj": [
"q_proj",
"k_proj",
"v_proj",
],
}
def __init__(self, *, vllm_config: VllmConfig, prefix: str = "") -> None:
super().__init__()
self.config = vllm_config.model_config.hf_config
self.vllm_config = vllm_config
self.model_config = vllm_config.model_config
self.scheduler_config = vllm_config.scheduler_config
self.model = Plamo3Model(
vllm_config=vllm_config, prefix=maybe_prefix(prefix, "model")
)
self.vocab_size = self.config.vocab_size
self.unpadded_vocab_size = self.config.vocab_size
num_embeddings = ((self.vocab_size + 15) // 16) * 16
self.lm_head = ParallelLMHead(
num_embeddings,
self.config.hidden_size,
org_num_embeddings=self.config.vocab_size,
padding_size=DEFAULT_VOCAB_PADDING_SIZE,
prefix=f"{prefix}.lm_head",
)
if self.config.tie_word_embeddings:
self.lm_head = self.lm_head.tie_weights(self.model.embed_tokens)
self.logits_processor = LogitsProcessor(
self.unpadded_vocab_size, self.config.vocab_size
)
self.make_empty_intermediate_tensors = (
self.model.make_empty_intermediate_tensors
)
def embed_input_ids(self, input_ids: torch.Tensor) -> torch.Tensor:
return self.model.embed_input_ids(input_ids)
def forward(
self,
input_ids: torch.Tensor,
positions: torch.Tensor,
intermediate_tensors: IntermediateTensors | None = None,
inputs_embeds: torch.Tensor | None = None,
) -> torch.Tensor:
hidden_states = self.model(
input_ids, positions, intermediate_tensors, inputs_embeds
)
return hidden_states
def compute_logits(
self,
hidden_states: torch.Tensor,
) -> torch.Tensor | None:
logits = self.logits_processor(self.lm_head, hidden_states)
return logits
def load_weights(self, weights: Iterable[tuple[str, torch.Tensor]]):
loader = AutoWeightsLoader(
self,
skip_prefixes=(["lm_head."] if self.config.tie_word_embeddings else None),
)
return loader.load_weights(weights)