vllm/vllm/v1/attention/backends/gdn_attn.py
Benjamin Chislett 304419576a
[Perf] Refactor cudagraph_support to enable full CUDA graphs for spec decoding with FlashInfer (#28479)
Signed-off-by: Benjamin Chislett <bchislett@nvidia.com>
2025-11-13 01:56:40 +09:00

388 lines
15 KiB
Python

# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
"""Backend for GatedDeltaNet attention."""
from dataclasses import dataclass
import torch
from vllm.attention.backends.abstract import AttentionBackend
from vllm.attention.backends.utils import PAD_SLOT_ID
from vllm.config import VllmConfig
from vllm.v1.attention.backends.utils import (
AttentionCGSupport,
AttentionMetadataBuilder,
CommonAttentionMetadata,
compute_causal_conv1d_metadata,
split_decodes_and_prefills,
)
from vllm.v1.kv_cache_interface import AttentionSpec, MambaSpec
class GDNAttentionBackend(AttentionBackend):
@staticmethod
def get_builder_cls() -> type["GDNAttentionMetadataBuilder"]:
return GDNAttentionMetadataBuilder
@dataclass
class GDNAttentionMetadata:
num_prefills: int
num_prefill_tokens: int
num_decodes: int
num_decode_tokens: int
num_spec_decodes: int
num_spec_decode_tokens: int
num_actual_tokens: int
has_initial_state: torch.Tensor | None = None
spec_query_start_loc: torch.Tensor | None = None # shape: [num_spec_decodes + 1,]
non_spec_query_start_loc: torch.Tensor | None = (
None # shape: [batch - num_spec_decodes + 1,]
)
spec_state_indices_tensor: torch.Tensor | None = None # shape: [batch, num_spec]
non_spec_state_indices_tensor: torch.Tensor | None = (
None # shape: [batch - num_spec_decodes,]
)
spec_sequence_masks: torch.Tensor | None = None # shape: [batch,]
spec_token_indx: torch.Tensor | None = None
non_spec_token_indx: torch.Tensor | None = None
num_accepted_tokens: torch.Tensor | None = None # shape: [batch,]
# The following attributes are for triton implementation of causal_conv1d
nums_dict: dict | None = None
batch_ptr: torch.Tensor | None = None
token_chunk_offset_ptr: torch.Tensor | None = None
class GDNAttentionMetadataBuilder(AttentionMetadataBuilder[GDNAttentionMetadata]):
_cudagraph_support = AttentionCGSupport.UNIFORM_BATCH
reorder_batch_threshold: int = 1
def __init__(
self,
kv_cache_spec: AttentionSpec,
layer_names: list[str],
vllm_config: VllmConfig,
device: torch.device,
):
assert isinstance(kv_cache_spec, MambaSpec)
self.vllm_config = vllm_config
self.compilation_config = vllm_config.compilation_config
self.speculative_config = vllm_config.speculative_config
self.kv_cache_spec = kv_cache_spec
if self.speculative_config:
self.num_spec = self.speculative_config.num_speculative_tokens
else:
self.num_spec = 0
self.use_spec_decode = self.num_spec > 0
self._init_reorder_batch_threshold(1, self.use_spec_decode)
self.use_full_cuda_graph = (
self.compilation_config.cudagraph_mode.has_full_cudagraphs()
)
self.decode_cudagraph_max_bs = min(
self.vllm_config.scheduler_config.max_num_seqs * (self.num_spec + 1),
self.compilation_config.max_cudagraph_capture_size,
)
self.spec_state_indices_tensor = torch.empty(
(self.decode_cudagraph_max_bs, self.num_spec + 1),
dtype=torch.int32,
device=device,
)
self.non_spec_state_indices_tensor = torch.empty(
(self.decode_cudagraph_max_bs,),
dtype=torch.int32,
device=device,
)
self.spec_sequence_masks = torch.empty(
(self.decode_cudagraph_max_bs,),
dtype=torch.bool,
device=device,
)
self.spec_token_indx = torch.empty(
(self.decode_cudagraph_max_bs * (self.num_spec + 1),),
dtype=torch.int32,
device=device,
)
self.non_spec_token_indx = torch.empty(
(self.decode_cudagraph_max_bs * (self.num_spec + 1),),
dtype=torch.int32,
device=device,
)
self.spec_query_start_loc = torch.empty(
(self.decode_cudagraph_max_bs + 1,),
dtype=torch.int32,
device=device,
)
self.non_spec_query_start_loc = torch.empty(
(self.decode_cudagraph_max_bs + 1,),
dtype=torch.int32,
device=device,
)
self.num_accepted_tokens = torch.empty(
(self.decode_cudagraph_max_bs,),
dtype=torch.int32,
device=device,
)
def build( # type: ignore[override]
self,
common_prefix_len: int,
common_attn_metadata: CommonAttentionMetadata,
num_accepted_tokens: torch.Tensor | None = None,
num_decode_draft_tokens_cpu: torch.Tensor | None = None,
fast_build: bool = False,
) -> GDNAttentionMetadata:
m = common_attn_metadata
query_start_loc = m.query_start_loc
context_lens = m.num_computed_tokens_cpu
context_lens_tensor = context_lens.to(query_start_loc.device)
nums_dict, batch_ptr, token_chunk_offset_ptr = None, None, None
if (
not self.use_spec_decode
or num_decode_draft_tokens_cpu is None
or num_decode_draft_tokens_cpu[num_decode_draft_tokens_cpu >= 0]
.sum()
.item()
== 0
):
spec_sequence_masks = None
num_spec_decodes = 0
else:
spec_sequence_masks = num_decode_draft_tokens_cpu >= 0
num_spec_decodes = spec_sequence_masks.sum().item()
if num_spec_decodes == 0:
spec_sequence_masks = None
else:
spec_sequence_masks = spec_sequence_masks.to(
query_start_loc.device, non_blocking=True
)
if spec_sequence_masks is None:
num_decodes, num_prefills, num_decode_tokens, num_prefill_tokens = (
split_decodes_and_prefills(m, decode_threshold=1)
)
num_spec_decode_tokens = 0
spec_token_indx = None
non_spec_token_indx = None
spec_state_indices_tensor = None
non_spec_state_indices_tensor = m.block_table_tensor[:, 0]
spec_query_start_loc = None
non_spec_query_start_loc = query_start_loc
num_accepted_tokens = None
else:
query_lens = query_start_loc[1:] - query_start_loc[:-1]
non_spec_query_lens = query_lens[~spec_sequence_masks]
num_decodes = (non_spec_query_lens == 1).sum().item()
num_prefills = non_spec_query_lens.size(0) - num_decodes
num_decode_tokens = num_decodes
num_prefill_tokens = non_spec_query_lens.sum().item() - num_decode_tokens
num_spec_decode_tokens = (
query_lens.sum().item() - num_prefill_tokens - num_decode_tokens
)
if num_prefills == 0 and num_decodes == 0:
spec_token_size = min(
num_spec_decodes * (self.num_spec + 1),
query_start_loc[-1].item(),
)
spec_token_indx = torch.arange(
spec_token_size,
dtype=torch.int32,
device=query_start_loc.device,
)
non_spec_token_indx = torch.empty(
0, dtype=torch.int32, device=query_start_loc.device
)
spec_state_indices_tensor = m.block_table_tensor[:, : self.num_spec + 1]
non_spec_state_indices_tensor = None
spec_query_start_loc = query_start_loc
non_spec_query_start_loc = None
else:
spec_token_masks = torch.repeat_interleave(
spec_sequence_masks, query_lens
)
index = torch.argsort(spec_token_masks)
num_non_spec_tokens = num_prefill_tokens + num_decode_tokens
non_spec_token_indx = index[:num_non_spec_tokens]
spec_token_indx = index[num_non_spec_tokens:]
spec_state_indices_tensor = m.block_table_tensor[
spec_sequence_masks, : self.num_spec + 1
]
non_spec_state_indices_tensor = m.block_table_tensor[
~spec_sequence_masks, 0
]
spec_query_start_loc = torch.zeros(
num_spec_decodes + 1,
dtype=torch.int32,
device=query_start_loc.device,
)
torch.cumsum(
query_lens[spec_sequence_masks], dim=0, out=spec_query_start_loc[1:]
)
non_spec_query_start_loc = torch.zeros(
query_lens.size(0) - num_spec_decodes + 1,
dtype=torch.int32,
device=query_start_loc.device,
)
torch.cumsum(
query_lens[~spec_sequence_masks],
dim=0,
out=non_spec_query_start_loc[1:],
)
assert num_accepted_tokens is not None
num_accepted_tokens = num_accepted_tokens[spec_sequence_masks]
if num_prefills > 0:
has_initial_state = context_lens_tensor > 0
if spec_sequence_masks is not None:
has_initial_state = has_initial_state[~spec_sequence_masks]
nums_dict, batch_ptr, token_chunk_offset_ptr = (
compute_causal_conv1d_metadata(non_spec_query_start_loc)
)
else:
has_initial_state = None
num_actual_tokens = (
num_prefill_tokens + num_decode_tokens + num_spec_decode_tokens
)
# prepare tensors for cudagraph
#
# With speculative decoding, the xgrammar backend may rollback tokens
# and causing some sequences has less draft tokens than self.num_spec.
#
# In above cases, the max possible batch size for n tokens, can be
# min(n, cudagraph_max_bs).
if (
self.use_full_cuda_graph
and num_prefills == 0
and num_decodes == 0
and num_spec_decodes <= self.decode_cudagraph_max_bs
and num_spec_decode_tokens <= self.decode_cudagraph_max_bs
):
num_actual_tokens = self.vllm_config.pad_for_cudagraph(m.num_actual_tokens)
batch_size = min(self.decode_cudagraph_max_bs, num_actual_tokens)
self.spec_state_indices_tensor[:num_spec_decodes].copy_(
spec_state_indices_tensor, non_blocking=True
)
spec_state_indices_tensor = self.spec_state_indices_tensor[:batch_size]
spec_state_indices_tensor[num_spec_decodes:].fill_(PAD_SLOT_ID)
self.spec_sequence_masks[:num_spec_decodes].copy_(
spec_sequence_masks, non_blocking=True
)
spec_sequence_masks = self.spec_sequence_masks[:batch_size]
spec_sequence_masks[num_spec_decodes:].fill_(False)
assert non_spec_token_indx is not None and spec_token_indx is not None
self.non_spec_token_indx[: non_spec_token_indx.size(0)].copy_(
non_spec_token_indx, non_blocking=True
)
non_spec_token_indx = self.non_spec_token_indx[
: non_spec_token_indx.size(0)
]
self.spec_token_indx[: spec_token_indx.size(0)].copy_(
spec_token_indx, non_blocking=True
)
spec_token_indx = self.spec_token_indx[: spec_token_indx.size(0)]
self.spec_query_start_loc[: num_spec_decodes + 1].copy_(
spec_query_start_loc, non_blocking=True
)
spec_num_query_tokens = spec_query_start_loc[-1] # type: ignore[index]
spec_query_start_loc = self.spec_query_start_loc[: batch_size + 1]
spec_query_start_loc[num_spec_decodes + 1 :].fill_(spec_num_query_tokens)
self.num_accepted_tokens[:num_spec_decodes].copy_(
num_accepted_tokens, non_blocking=True
)
num_accepted_tokens = self.num_accepted_tokens[:batch_size]
num_accepted_tokens[num_spec_decodes:].fill_(1)
if (
self.use_full_cuda_graph
and num_prefills == 0
and num_spec_decodes == 0
and num_decodes <= self.decode_cudagraph_max_bs
):
num_actual_tokens = self.vllm_config.pad_for_cudagraph(m.num_actual_tokens)
batch_size = num_actual_tokens
self.non_spec_state_indices_tensor[:num_decodes].copy_(
non_spec_state_indices_tensor, non_blocking=True
)
non_spec_state_indices_tensor = self.non_spec_state_indices_tensor[
:batch_size
]
non_spec_state_indices_tensor[num_decodes:].fill_(PAD_SLOT_ID)
self.non_spec_query_start_loc[: num_decodes + 1].copy_(
non_spec_query_start_loc, non_blocking=True
)
non_spec_num_query_tokens = non_spec_query_start_loc[-1] # type: ignore[index]
non_spec_query_start_loc = self.non_spec_query_start_loc[: batch_size + 1]
non_spec_query_start_loc[num_decodes + 1 :].fill_(non_spec_num_query_tokens)
attn_metadata = GDNAttentionMetadata(
num_prefills=num_prefills,
num_prefill_tokens=num_prefill_tokens,
num_decodes=num_decodes,
num_decode_tokens=num_decode_tokens,
num_spec_decodes=num_spec_decodes,
num_spec_decode_tokens=num_spec_decode_tokens,
num_actual_tokens=num_actual_tokens,
has_initial_state=has_initial_state,
spec_query_start_loc=spec_query_start_loc,
non_spec_query_start_loc=non_spec_query_start_loc,
spec_state_indices_tensor=spec_state_indices_tensor,
non_spec_state_indices_tensor=non_spec_state_indices_tensor,
spec_sequence_masks=spec_sequence_masks,
spec_token_indx=spec_token_indx,
non_spec_token_indx=non_spec_token_indx,
num_accepted_tokens=num_accepted_tokens,
nums_dict=nums_dict,
batch_ptr=batch_ptr,
token_chunk_offset_ptr=token_chunk_offset_ptr,
)
return attn_metadata
def build_for_cudagraph_capture(
self, common_attn_metadata: CommonAttentionMetadata
):
"""
This method builds the metadata for full cudagraph capture.
Currently, only decode is supported for full cudagraphs with Mamba.
"""
m = common_attn_metadata
assert (
m.num_reqs <= self.decode_cudagraph_max_bs
and m.num_actual_tokens <= self.decode_cudagraph_max_bs
), (
f"GDN only supports decode-only full CUDAGraph capture. "
f"Make sure batch size ({m.num_reqs}) <= "
f"cudagraph capture sizes ({self.decode_cudagraph_max_bs}), "
f"and number of tokens ({m.num_actual_tokens}) <= "
f"cudagraph capture sizes ({self.decode_cudagraph_max_bs})."
)
num_accepted_tokens = torch.diff(m.query_start_loc)
num_decode_draft_tokens_cpu = (num_accepted_tokens - 1).cpu()
m.num_computed_tokens_cpu = m.seq_lens_cpu - num_accepted_tokens.cpu()
return self.build(0, m, num_accepted_tokens, num_decode_draft_tokens_cpu)