mirror of
https://git.datalinker.icu/vllm-project/vllm.git
synced 2026-01-23 12:24:29 +08:00
141 lines
6.0 KiB
Python
141 lines
6.0 KiB
Python
from typing import Optional, Tuple
|
|
|
|
import torch
|
|
|
|
from vllm import _custom_ops as ops
|
|
from vllm.model_executor.layers.quantization.utils.quant_utils import (
|
|
pack_quantized_values_into_int32)
|
|
from vllm.model_executor.parameter import (BasevLLMParameter,
|
|
permute_param_layout_)
|
|
from vllm.scalar_type import scalar_types
|
|
|
|
from .MPLinearKernel import MPLinearKernel, MPLinearLayerConfig
|
|
|
|
|
|
class ExllamaLinearKernel(MPLinearKernel):
|
|
SUPPORTED_QUANT_TYPES = [scalar_types.uint4b8, scalar_types.uint8b128]
|
|
# In theory supports `scalar_types.uint2b2, scalar_types.uint3b4` too but
|
|
# currently untested so not added to the list
|
|
|
|
@classmethod
|
|
def get_min_capability(cls) -> int:
|
|
return 60
|
|
|
|
@classmethod
|
|
def can_implement(cls,
|
|
c: MPLinearLayerConfig) -> Tuple[bool, Optional[str]]:
|
|
if c.has_g_idx and\
|
|
c.partition_weight_shape[0] != c.full_weight_shape[0]:
|
|
return False, "Act reordering currently not supported by Exllama, "\
|
|
"when the input features are partitioned across "\
|
|
"devices"
|
|
|
|
if c.partition_weight_shape[1] % (32 // c.weight_type.size_bits) != 0:
|
|
return False, "Output features must be a multiple of the pack " \
|
|
"factor (32 / num_bits) so that we can correctly " \
|
|
"pack the zero points"
|
|
|
|
if c.act_type != torch.float16:
|
|
return False, "Exllama only supports float16 activations"
|
|
|
|
if c.weight_type not in cls.SUPPORTED_QUANT_TYPES:
|
|
return False, f"Quant type ({c.weight_type}) not supported by "\
|
|
"Exllama, supported types are: "\
|
|
f"{cls.SUPPORTED_QUANT_TYPES}"
|
|
|
|
if c.full_weight_shape[0] % c.group_size != 0:
|
|
return False, f"Group size ({c.group_size}) does not evenly divide"\
|
|
" the number of input features "\
|
|
f"({c.full_weight_shape[0]})"
|
|
|
|
return True, None
|
|
|
|
def process_weights_after_loading(self, layer: torch.nn.Module):
|
|
c = self.config
|
|
|
|
# For Exllama, we need to set a zero-point tensor if there is not one
|
|
if not c.zero_points:
|
|
self.w_zp_name = "qzeros"
|
|
device = getattr(layer, self.w_q_name).device
|
|
groups = c.partition_weight_shape[0] // c.group_size
|
|
out_features = c.partition_weight_shape[1]
|
|
|
|
if c.weight_type.has_bias():
|
|
# if the type has a bias we have to create a zeros tensor that
|
|
# contains the bias values repeated for each group (-1 due to
|
|
# a bug in the original GPTQ checkpoint format leading to
|
|
# exllama kernel adding 1 to the zero points during inference)
|
|
# Documentation of the bug can be found here:
|
|
# https://garden.danieldk.eu/GPTQ-Checkpoint-Format
|
|
zeros = torch.full((groups, out_features),
|
|
c.weight_type.bias - 1,
|
|
dtype=torch.int32,
|
|
device=device)
|
|
else:
|
|
raise NotImplementedError(
|
|
"A 0 zero-point is not supported by Exllama due to "
|
|
"a bug in the original GPTQ checkpoint format leading to "
|
|
"exllama kernel adding 1 to the zero points during "
|
|
"inference")
|
|
zeros = pack_quantized_values_into_int32(zeros,
|
|
c.weight_type,
|
|
packed_dim=1)
|
|
setattr(layer, self.w_zp_name,
|
|
torch.nn.Parameter(zeros, requires_grad=False))
|
|
|
|
if c.has_g_idx:
|
|
|
|
def transform_w_g_idx(x):
|
|
# Exllama wants the permutation array instead of the group
|
|
# indices
|
|
return torch.argsort(x).to(torch.int)
|
|
|
|
self._transform_param(layer, self.w_gidx_name, transform_w_g_idx)
|
|
else:
|
|
self.w_gidx_name = "g_idx"
|
|
empty_g_idx = torch.nn.Parameter(torch.empty((0, ),
|
|
dtype=torch.int,
|
|
device=device),
|
|
requires_grad=False)
|
|
setattr(layer, self.w_gidx_name, empty_g_idx)
|
|
|
|
def transform_w_q(x):
|
|
assert isinstance(x, BasevLLMParameter)
|
|
assert self.w_gidx_name is not None
|
|
g_idx = getattr(layer, self.w_gidx_name)
|
|
|
|
permute_param_layout_(x, input_dim=0, output_dim=1, packed_dim=0)
|
|
x_cont = x.data.contiguous()
|
|
ops.gptq_shuffle(x_cont, g_idx, c.weight_type.size_bits)
|
|
return x_cont
|
|
|
|
def transform_w_s(x):
|
|
assert isinstance(x, BasevLLMParameter)
|
|
permute_param_layout_(x, input_dim=0, output_dim=1)
|
|
x.data = x.data.contiguous()
|
|
return x.to(dtype=c.act_type)
|
|
|
|
# Repack weights and scales for Machete
|
|
self._transform_param(layer, self.w_q_name, transform_w_q)
|
|
self._transform_param(layer, self.w_s_name, transform_w_s)
|
|
|
|
def apply_weights(self,
|
|
layer: torch.nn.Module,
|
|
x: torch.Tensor,
|
|
bias: Optional[torch.Tensor] = None) -> torch.Tensor:
|
|
c = self.config
|
|
|
|
x_2d = x.reshape(-1, x.shape[-1])
|
|
out_shape = x.shape[:-1] + (c.partition_weight_shape[1], )
|
|
|
|
w_q, w_s, w_zp, w_g_idx = self._get_weight_params(layer)
|
|
|
|
assert w_zp is not None, "Zero points are required by Exllama"
|
|
assert w_g_idx is not None, "Group index is required by Exllama"
|
|
output = ops.gptq_gemm(x_2d, w_q, w_zp, w_s, w_g_idx, True,
|
|
c.weight_type.size_bits)
|
|
|
|
if bias is not None:
|
|
output.add_(bias)
|
|
return output.reshape(out_shape)
|