vllm/vllm/utils/import_utils.py
Varun Sundar Rabindranath 9912b8ccb8
[Build] Add OpenAI triton_kernels (#28788)
Signed-off-by: Varun Sundar Rabindranath <vsundarr@redhat.com>
Co-authored-by: Varun Sundar Rabindranath <vsundarr@redhat.com>
2025-11-18 16:45:20 -08:00

450 lines
14 KiB
Python

# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
"""
Contains helpers related to importing modules.
This is similar in concept to the `importlib` module.
"""
import importlib.metadata
import importlib.util
import os
import sys
from functools import cache
from types import ModuleType
from typing import Any
import regex as re
from typing_extensions import Never
from vllm.logger import init_logger
logger = init_logger(__name__)
# TODO: This function can be removed if transformer_modules classes are
# serialized by value when communicating between processes
def init_cached_hf_modules() -> None:
"""
Lazy initialization of the Hugging Face modules.
"""
from transformers.dynamic_module_utils import init_hf_modules
init_hf_modules()
def import_pynvml():
"""
Historical comments:
libnvml.so is the library behind nvidia-smi, and
pynvml is a Python wrapper around it. We use it to get GPU
status without initializing CUDA context in the current process.
Historically, there are two packages that provide pynvml:
- `nvidia-ml-py` (https://pypi.org/project/nvidia-ml-py/): The official
wrapper. It is a dependency of vLLM, and is installed when users
install vLLM. It provides a Python module named `pynvml`.
- `pynvml` (https://pypi.org/project/pynvml/): An unofficial wrapper.
Prior to version 12.0, it also provides a Python module `pynvml`,
and therefore conflicts with the official one. What's worse,
the module is a Python package, and has higher priority than
the official one which is a standalone Python file.
This causes errors when both of them are installed.
Starting from version 12.0, it migrates to a new module
named `pynvml_utils` to avoid the conflict.
It is so confusing that many packages in the community use the
unofficial one by mistake, and we have to handle this case.
For example, `nvcr.io/nvidia/pytorch:24.12-py3` uses the unofficial
one, and it will cause errors, see the issue
https://github.com/vllm-project/vllm/issues/12847 for example.
After all the troubles, we decide to copy the official `pynvml`
module to our codebase, and use it directly.
"""
import vllm.third_party.pynvml as pynvml
return pynvml
@cache
def import_triton_kernels():
"""
For convenience, prioritize triton_kernels that is available in
`site-packages`. Use `vllm.third_party.triton_kernels` as a fall-back.
"""
if _has_module("triton_kernels"):
import triton_kernels
logger.debug_once(
f"Loading module triton_kernels from {triton_kernels.__file__}.",
scope="local",
)
elif _has_module("vllm.third_party.triton_kernels"):
import vllm.third_party.triton_kernels as triton_kernels
logger.debug_once(
f"Loading module triton_kernels from {triton_kernels.__file__}.",
scope="local",
)
sys.modules["triton_kernels"] = triton_kernels
else:
logger.info_once(
"triton_kernels unavailable in this build. "
"Please consider installing triton_kernels from "
"https://github.com/triton-lang/triton/tree/main/python/triton_kernels"
)
def import_from_path(module_name: str, file_path: str | os.PathLike):
"""
Import a Python file according to its file path.
Based on the official recipe:
https://docs.python.org/3/library/importlib.html#importing-a-source-file-directly
"""
spec = importlib.util.spec_from_file_location(module_name, file_path)
if spec is None:
raise ModuleNotFoundError(f"No module named {module_name!r}")
assert spec.loader is not None
module = importlib.util.module_from_spec(spec)
sys.modules[module_name] = module
spec.loader.exec_module(module)
return module
def resolve_obj_by_qualname(qualname: str) -> Any:
"""
Resolve an object by its fully-qualified class name.
"""
module_name, obj_name = qualname.rsplit(".", 1)
module = importlib.import_module(module_name)
return getattr(module, obj_name)
@cache
def get_vllm_optional_dependencies():
metadata = importlib.metadata.metadata("vllm")
requirements = metadata.get_all("Requires-Dist", [])
extras = metadata.get_all("Provides-Extra", [])
return {
extra: [
re.split(r";|>=|<=|==", req)[0]
for req in requirements
if req.endswith(f'extra == "{extra}"')
]
for extra in extras
}
class _PlaceholderBase:
"""
Disallows downstream usage of placeholder modules.
We need to explicitly override each dunder method because
[`__getattr__`][vllm.utils.import_utils._PlaceholderBase.__getattr__]
is not called when they are accessed.
Info:
[Special method lookup](https://docs.python.org/3/reference/datamodel.html#special-lookup)
"""
def __getattr__(self, key: str) -> Never:
"""
The main class should implement this to throw an error
for attribute accesses representing downstream usage.
"""
raise NotImplementedError
# [Basic customization]
def __lt__(self, other: object):
return self.__getattr__("__lt__")
def __le__(self, other: object):
return self.__getattr__("__le__")
def __eq__(self, other: object):
return self.__getattr__("__eq__")
def __ne__(self, other: object):
return self.__getattr__("__ne__")
def __gt__(self, other: object):
return self.__getattr__("__gt__")
def __ge__(self, other: object):
return self.__getattr__("__ge__")
def __hash__(self):
return self.__getattr__("__hash__")
def __bool__(self):
return self.__getattr__("__bool__")
# [Callable objects]
def __call__(self, *args: object, **kwargs: object):
return self.__getattr__("__call__")
# [Container types]
def __len__(self):
return self.__getattr__("__len__")
def __getitem__(self, key: object):
return self.__getattr__("__getitem__")
def __setitem__(self, key: object, value: object):
return self.__getattr__("__setitem__")
def __delitem__(self, key: object):
return self.__getattr__("__delitem__")
# __missing__ is optional according to __getitem__ specification,
# so it is skipped
# __iter__ and __reversed__ have a default implementation
# based on __len__ and __getitem__, so they are skipped.
# [Numeric Types]
def __add__(self, other: object):
return self.__getattr__("__add__")
def __sub__(self, other: object):
return self.__getattr__("__sub__")
def __mul__(self, other: object):
return self.__getattr__("__mul__")
def __matmul__(self, other: object):
return self.__getattr__("__matmul__")
def __truediv__(self, other: object):
return self.__getattr__("__truediv__")
def __floordiv__(self, other: object):
return self.__getattr__("__floordiv__")
def __mod__(self, other: object):
return self.__getattr__("__mod__")
def __divmod__(self, other: object):
return self.__getattr__("__divmod__")
def __pow__(self, other: object, modulo: object = ...):
return self.__getattr__("__pow__")
def __lshift__(self, other: object):
return self.__getattr__("__lshift__")
def __rshift__(self, other: object):
return self.__getattr__("__rshift__")
def __and__(self, other: object):
return self.__getattr__("__and__")
def __xor__(self, other: object):
return self.__getattr__("__xor__")
def __or__(self, other: object):
return self.__getattr__("__or__")
# r* and i* methods have lower priority than
# the methods for left operand so they are skipped
def __neg__(self):
return self.__getattr__("__neg__")
def __pos__(self):
return self.__getattr__("__pos__")
def __abs__(self):
return self.__getattr__("__abs__")
def __invert__(self):
return self.__getattr__("__invert__")
# __complex__, __int__ and __float__ have a default implementation
# based on __index__, so they are skipped.
def __index__(self):
return self.__getattr__("__index__")
def __round__(self, ndigits: object = ...):
return self.__getattr__("__round__")
def __trunc__(self):
return self.__getattr__("__trunc__")
def __floor__(self):
return self.__getattr__("__floor__")
def __ceil__(self):
return self.__getattr__("__ceil__")
# [Context managers]
def __enter__(self):
return self.__getattr__("__enter__")
def __exit__(self, *args: object, **kwargs: object):
return self.__getattr__("__exit__")
class PlaceholderModule(_PlaceholderBase):
"""
A placeholder object to use when a module does not exist.
This enables more informative errors when trying to access attributes
of a module that does not exist.
"""
def __init__(self, name: str) -> None:
super().__init__()
# Apply name mangling to avoid conflicting with module attributes
self.__name = name
def placeholder_attr(self, attr_path: str):
return _PlaceholderModuleAttr(self, attr_path)
def __getattr__(self, key: str) -> Never:
name = self.__name
try:
importlib.import_module(name)
except ImportError as exc:
for extra, names in get_vllm_optional_dependencies().items():
if name in names:
msg = f"Please install vllm[{extra}] for {extra} support"
raise ImportError(msg) from exc
raise exc
raise AssertionError(
"PlaceholderModule should not be used "
"when the original module can be imported"
)
class _PlaceholderModuleAttr(_PlaceholderBase):
def __init__(self, module: PlaceholderModule, attr_path: str) -> None:
super().__init__()
# Apply name mangling to avoid conflicting with module attributes
self.__module = module
self.__attr_path = attr_path
def placeholder_attr(self, attr_path: str):
return _PlaceholderModuleAttr(self.__module, f"{self.__attr_path}.{attr_path}")
def __getattr__(self, key: str) -> Never:
getattr(self.__module, f"{self.__attr_path}.{key}")
raise AssertionError(
"PlaceholderModule should not be used "
"when the original module can be imported"
)
class LazyLoader(ModuleType):
"""
`LazyLoader` module borrowed from [Tensorflow]
(https://github.com/tensorflow/tensorflow/blob/main/tensorflow/python/util/lazy_loader.py)
with an addition of "module caching".
Lazily import a module, mainly to avoid pulling in large dependencies.
Modules such as `xgrammar` might do additional side effects, so we
only want to use this when it is needed, delaying all eager effects.
"""
def __init__(
self,
local_name: str,
parent_module_globals: dict[str, Any],
name: str,
):
self._local_name = local_name
self._parent_module_globals = parent_module_globals
self._module: ModuleType | None = None
super().__init__(str(name))
def _load(self) -> ModuleType:
# Import the target module and insert it into the parent's namespace
try:
module = importlib.import_module(self.__name__)
self._parent_module_globals[self._local_name] = module
# The additional add to sys.modules
# ensures library is actually loaded.
sys.modules[self._local_name] = module
except ModuleNotFoundError as err:
raise err from None
# Update this object's dict so that if someone keeps a
# reference to the LazyLoader, lookups are efficient
# (__getattr__ is only called on lookups that fail).
self.__dict__.update(module.__dict__)
return module
def __getattr__(self, item: Any) -> Any:
if self._module is None:
self._module = self._load()
return getattr(self._module, item)
def __dir__(self) -> list[str]:
if self._module is None:
self._module = self._load()
return dir(self._module)
# Optional dependency detection utilities
@cache
def _has_module(module_name: str) -> bool:
"""Return True if *module_name* can be found in the current environment.
The result is cached so that subsequent queries for the same module incur
no additional overhead.
"""
return importlib.util.find_spec(module_name) is not None
def has_pplx() -> bool:
"""Whether the optional `pplx_kernels` package is available."""
return _has_module("pplx_kernels")
def has_deep_ep() -> bool:
"""Whether the optional `deep_ep` package is available."""
return _has_module("deep_ep")
def has_deep_gemm() -> bool:
"""Whether the optional `deep_gemm` package is available."""
return _has_module("deep_gemm")
def has_triton_kernels() -> bool:
"""Whether the optional `triton_kernels` package is available."""
is_available = _has_module("triton_kernels") or _has_module(
"vllm.third_party.triton_kernels"
)
if is_available:
import_triton_kernels()
return is_available
def has_tilelang() -> bool:
"""Whether the optional `tilelang` package is available."""
return _has_module("tilelang")
def has_arctic_inference() -> bool:
"""Whether the optional `arctic_inference` package is available."""
return _has_module("arctic_inference")