Chendi.Xue e45271b09c [BugFix][QWEN-VL]fix wrong apply_rotary_emb_torch selection introduced by #24642 (#26123)
Signed-off-by: Chendi Xue <Chendi.Xue@intel.com>
Signed-off-by: Chendi.Xue <chendi.xue@intel.com>
Co-authored-by: Roger Wang <hey@rogerw.io>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:58 -07:00

179 lines
5.2 KiB
Python

# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import math
from functools import cache
from importlib.util import find_spec
from typing import Callable, Optional
import torch
from vllm.logger import init_logger
from vllm.platforms import current_platform
from vllm.utils import direct_register_custom_op
if current_platform.is_cuda():
from vllm.vllm_flash_attn.layers.rotary import apply_rotary_emb
logger = init_logger(__name__)
# common functions
def rotate_neox(x: torch.Tensor) -> torch.Tensor:
x1 = x[..., :x.shape[-1] // 2]
x2 = x[..., x.shape[-1] // 2:]
return torch.cat((-x2, x1), dim=-1)
def rotate_gptj(x: torch.Tensor) -> torch.Tensor:
x1 = x[..., ::2]
x2 = x[..., 1::2]
x = torch.stack((-x2, x1), dim=-1)
return x.flatten(-2)
def apply_rotary_emb_torch(
x: torch.Tensor,
cos: torch.Tensor,
sin: torch.Tensor,
is_neox_style: bool,
) -> torch.Tensor:
cos = cos.unsqueeze(-2).to(x.dtype)
sin = sin.unsqueeze(-2).to(x.dtype)
if is_neox_style:
x1, x2 = torch.chunk(x, 2, dim=-1)
else:
x1 = x[..., ::2]
x2 = x[..., 1::2]
o1 = x1 * cos - x2 * sin
o2 = x2 * cos + x1 * sin
if is_neox_style:
return torch.cat((o1, o2), dim=-1)
else:
return torch.stack((o1, o2), dim=-1).flatten(-2)
def apply_rotary_emb_dispatch(x: torch.Tensor, cos: torch.Tensor,
sin: torch.Tensor,
is_neox_style: bool) -> torch.Tensor:
"""
Args:
x: [num_tokens, num_heads, head_size]
cos: [num_tokens, head_size // 2]
sin: [num_tokens, head_size // 2]
is_neox_style: Whether to use the Neox-style or GPT-J-style rotary
positional embeddings.
"""
if current_platform.is_cuda():
return apply_rotary_emb(x.unsqueeze(0), cos, sin,
not is_neox_style).squeeze(0)
else:
return apply_rotary_emb_torch(x, cos, sin, is_neox_style)
@cache
def dispatch_rotary_emb_function(
default: Optional[Callable[..., torch.Tensor]] = None
) -> Callable[..., torch.Tensor]:
if current_platform.is_cuda():
return apply_rotary_emb
if current_platform.is_rocm():
if find_spec("flash_attn") is not None:
from flash_attn.ops.triton.rotary import apply_rotary
return apply_rotary
else:
logger.warning(
"flash_attn is not installed. Falling back to PyTorch "
"implementation for rotary embeddings.")
if default is not None:
return default
else:
return apply_rotary_emb_torch
# yarn functions
# Inverse dim formula to find dim based on number of rotations
def yarn_find_correction_dim(num_rotations: int,
dim: int,
base: float = 10000,
max_position_embeddings: int = 2048) -> float:
return (dim * math.log(max_position_embeddings /
(num_rotations * 2 * math.pi))) / (2 *
math.log(base))
# Find dim range bounds based on rotations
def yarn_find_correction_range(
low_rot: int,
high_rot: int,
dim: int,
base: float = 10000,
max_position_embeddings: int = 2048) -> tuple[int, int]:
low = math.floor(
yarn_find_correction_dim(low_rot, dim, base, max_position_embeddings))
high = math.ceil(
yarn_find_correction_dim(high_rot, dim, base, max_position_embeddings))
return max(low, 0), min(high, dim - 1) # Clamp values just in case
def yarn_linear_ramp_mask(low: float, high: float, dim: int,
dtype: torch.dtype) -> torch.Tensor:
if low == high:
high += 0.001 # Prevent singularity
linear_func = (torch.arange(dim, dtype=dtype) - low) / (high - low)
ramp_func = torch.clamp(linear_func, 0, 1)
return ramp_func
def yarn_get_mscale(scale: float = 1) -> float:
if scale <= 1:
return 1.0
return 0.1 * math.log(scale) + 1.0
def _flashinfer_rotary_embedding(
positions: torch.Tensor,
query: torch.Tensor,
key: torch.Tensor,
head_size: int,
cos_sin_cache: torch.Tensor,
is_neox: bool,
) -> None:
"""Custom op wrapper for flashinfer's rotary embedding.
This is an in-place operation that modifies query and key tensors directly.
"""
from flashinfer.rope import apply_rope_with_cos_sin_cache_inplace
apply_rope_with_cos_sin_cache_inplace(
positions=positions,
query=query,
key=key,
head_size=head_size,
cos_sin_cache=cos_sin_cache,
is_neox=is_neox,
)
def _flashinfer_rotary_embedding_fake(
positions: torch.Tensor,
query: torch.Tensor,
key: torch.Tensor,
head_size: int,
cos_sin_cache: torch.Tensor,
is_neox: bool,
) -> None:
return
# Register flashinfer rotary embedding custom op
direct_register_custom_op(
op_name="flashinfer_rotary_embedding",
op_func=_flashinfer_rotary_embedding,
mutates_args=["query", "key"], # These tensors are modified in-place
fake_impl=_flashinfer_rotary_embedding_fake,
)