mirror of
https://git.datalinker.icu/vllm-project/vllm.git
synced 2025-12-10 16:25:40 +08:00
- **Add SPDX license headers to python source files**
- **Check for SPDX headers using pre-commit**
commit 9d7ef44c3cfb72ca4c32e1c677d99259d10d4745
Author: Russell Bryant <rbryant@redhat.com>
Date: Fri Jan 31 14:18:24 2025 -0500
Add SPDX license headers to python source files
This commit adds SPDX license headers to python source files as
recommended to
the project by the Linux Foundation. These headers provide a concise way
that is
both human and machine readable for communicating license information
for each
source file. It helps avoid any ambiguity about the license of the code
and can
also be easily used by tools to help manage license compliance.
The Linux Foundation runs license scans against the codebase to help
ensure
we are in compliance with the licenses of the code we use, including
dependencies. Having these headers in place helps that tool do its job.
More information can be found on the SPDX site:
- https://spdx.dev/learn/handling-license-info/
Signed-off-by: Russell Bryant <rbryant@redhat.com>
commit 5a1cf1cb3b80759131c73f6a9dddebccac039dea
Author: Russell Bryant <rbryant@redhat.com>
Date: Fri Jan 31 14:36:32 2025 -0500
Check for SPDX headers using pre-commit
Signed-off-by: Russell Bryant <rbryant@redhat.com>
---------
Signed-off-by: Russell Bryant <rbryant@redhat.com>
435 lines
16 KiB
Python
435 lines
16 KiB
Python
# SPDX-License-Identifier: Apache-2.0
|
|
|
|
import random
|
|
from typing import List, Tuple
|
|
|
|
import pytest
|
|
import torch
|
|
|
|
from tests.kernels.utils import DEFAULT_OPCHECK_TEST_UTILS, opcheck
|
|
from vllm import _custom_ops as ops
|
|
from vllm.platforms import current_platform
|
|
|
|
COPYING_DIRECTION = [('cuda', 'cpu'), ('cuda', 'cuda'), ('cpu', 'cuda')]
|
|
DTYPES = [torch.half, torch.bfloat16, torch.float]
|
|
NUM_TOKENS = [42] # Arbitrary values for testing
|
|
NUM_LAYERS = [1] # Arbitrary values for testing
|
|
NUM_HEADS = [8] # Arbitrary values for testing
|
|
HEAD_SIZES = [64, 80, 120, 256]
|
|
BLOCK_SIZES = [8, 16, 32]
|
|
|
|
# Arbitrary values for testing
|
|
# don't make it too large. e.g. [1024, 36000] will OOM
|
|
NUM_BLOCKS = [1024, 10000]
|
|
|
|
NUM_MAPPINGS = [256] # Arbitrary values for testing
|
|
SEEDS = [0]
|
|
CUDA_DEVICES = [
|
|
f"cuda:{i}" for i in range(1 if torch.cuda.device_count() == 1 else 2)
|
|
]
|
|
|
|
# We assume fp8 is always enabled for testing.
|
|
KV_CACHE_DTYPE = ["auto", "fp8"]
|
|
|
|
|
|
@pytest.mark.parametrize("num_mappings", NUM_MAPPINGS)
|
|
@pytest.mark.parametrize("num_layers", NUM_LAYERS)
|
|
@pytest.mark.parametrize("num_heads", NUM_HEADS)
|
|
@pytest.mark.parametrize("head_size", HEAD_SIZES)
|
|
@pytest.mark.parametrize("block_size", BLOCK_SIZES)
|
|
@pytest.mark.parametrize("num_blocks", NUM_BLOCKS)
|
|
@pytest.mark.parametrize("dtype", DTYPES)
|
|
@pytest.mark.parametrize("seed", SEEDS)
|
|
@pytest.mark.parametrize("device", CUDA_DEVICES)
|
|
@pytest.mark.parametrize("kv_cache_dtype", KV_CACHE_DTYPE)
|
|
@torch.inference_mode()
|
|
def test_copy_blocks(
|
|
kv_cache_factory,
|
|
num_mappings: int,
|
|
num_layers: int,
|
|
num_heads: int,
|
|
head_size: int,
|
|
block_size: int,
|
|
num_blocks: int,
|
|
dtype: torch.dtype,
|
|
seed: int,
|
|
kv_cache_dtype: str,
|
|
device: str,
|
|
) -> None:
|
|
if kv_cache_dtype == "fp8" and head_size % 16:
|
|
pytest.skip()
|
|
current_platform.seed_everything(seed)
|
|
torch.set_default_device(device)
|
|
# Generate random block mappings where each source block is mapped to two
|
|
# destination blocks.
|
|
assert 2 * num_mappings <= num_blocks
|
|
src_blocks = random.sample(range(num_blocks), num_mappings)
|
|
remainig_blocks = list(set(range(num_blocks)) - set(src_blocks))
|
|
dst_blocks = random.sample(remainig_blocks, 2 * num_mappings)
|
|
block_mapping: List[Tuple[int, int]] = []
|
|
for i in range(num_mappings):
|
|
src = src_blocks[i]
|
|
dst1 = dst_blocks[2 * i]
|
|
dst2 = dst_blocks[2 * i + 1]
|
|
block_mapping.append((src, dst1))
|
|
block_mapping.append((src, dst2))
|
|
|
|
# Create the KV caches.
|
|
key_caches, value_caches = kv_cache_factory(num_blocks, block_size,
|
|
num_layers, num_heads,
|
|
head_size, kv_cache_dtype,
|
|
dtype, seed, device)
|
|
|
|
# Clone the KV caches.
|
|
cloned_key_caches = [key_cache.clone() for key_cache in key_caches]
|
|
cloned_value_caches = [value_cache.clone() for value_cache in value_caches]
|
|
|
|
# Call the copy blocks kernel.
|
|
block_mapping_tensor = torch.tensor(block_mapping,
|
|
dtype=torch.int64,
|
|
device=device).view(-1, 2)
|
|
|
|
opcheck(torch.ops._C_cache_ops.copy_blocks,
|
|
(key_caches, value_caches, block_mapping_tensor),
|
|
test_utils=DEFAULT_OPCHECK_TEST_UTILS,
|
|
cond=(head_size == HEAD_SIZES[0]))
|
|
ops.copy_blocks(key_caches, value_caches, block_mapping_tensor)
|
|
|
|
# Run the reference implementation.
|
|
for src, dst in block_mapping:
|
|
for cloned_key_cache in cloned_key_caches:
|
|
cloned_key_cache[dst].copy_(cloned_key_cache[src])
|
|
for cloned_value_cache in cloned_value_caches:
|
|
cloned_value_cache[dst].copy_(cloned_value_cache[src])
|
|
|
|
# Compare the results.
|
|
for key_cache, cloned_key_cache in zip(key_caches, cloned_key_caches):
|
|
torch.testing.assert_close(key_cache, cloned_key_cache)
|
|
for value_cache, cloned_value_cache in zip(value_caches,
|
|
cloned_value_caches):
|
|
torch.testing.assert_close(value_cache, cloned_value_cache)
|
|
|
|
|
|
@pytest.mark.parametrize("num_tokens", NUM_TOKENS)
|
|
@pytest.mark.parametrize("num_heads", NUM_HEADS)
|
|
@pytest.mark.parametrize("head_size", HEAD_SIZES)
|
|
@pytest.mark.parametrize("block_size", BLOCK_SIZES)
|
|
@pytest.mark.parametrize("num_blocks", NUM_BLOCKS)
|
|
@pytest.mark.parametrize("dtype", DTYPES)
|
|
@pytest.mark.parametrize("seed", SEEDS)
|
|
@pytest.mark.parametrize("device", CUDA_DEVICES)
|
|
@pytest.mark.parametrize("kv_cache_dtype", KV_CACHE_DTYPE)
|
|
@torch.inference_mode()
|
|
def test_reshape_and_cache(
|
|
kv_cache_factory,
|
|
num_tokens: int,
|
|
num_heads: int,
|
|
head_size: int,
|
|
block_size: int,
|
|
num_blocks: int,
|
|
dtype: torch.dtype,
|
|
seed: int,
|
|
device: str,
|
|
kv_cache_dtype: str,
|
|
) -> None:
|
|
if kv_cache_dtype == "fp8" and head_size % 16:
|
|
pytest.skip()
|
|
current_platform.seed_everything(seed)
|
|
torch.set_default_device(device)
|
|
# Create a random slot mapping.
|
|
num_slots = block_size * num_blocks
|
|
slot_mapping_lst = random.sample(range(num_slots), num_tokens)
|
|
slot_mapping = torch.tensor(slot_mapping_lst, dtype=torch.long)
|
|
|
|
qkv = torch.randn(num_tokens, 3, num_heads, head_size, dtype=dtype)
|
|
_, key, value = qkv.unbind(dim=1)
|
|
|
|
# Create the KV caches.
|
|
key_caches, value_caches = kv_cache_factory(num_blocks, block_size, 1,
|
|
num_heads, head_size,
|
|
kv_cache_dtype, dtype, seed,
|
|
device)
|
|
key_cache, value_cache = key_caches[0], value_caches[0]
|
|
|
|
# Clone the KV caches.
|
|
if kv_cache_dtype == "fp8":
|
|
cloned_key_cache = torch.empty_like(key_cache, dtype=torch.float16)
|
|
ops.convert_fp8(cloned_key_cache, key_cache)
|
|
cloned_value_cache = torch.empty_like(value_cache, dtype=torch.float16)
|
|
ops.convert_fp8(cloned_value_cache, value_cache)
|
|
else:
|
|
cloned_key_cache = key_cache.clone()
|
|
cloned_value_cache = value_cache.clone()
|
|
|
|
# Using default kv_scale
|
|
k_scale = v_scale = torch.tensor(1.0, dtype=torch.float32, device=device)
|
|
|
|
# Call the reshape_and_cache kernel.
|
|
opcheck(torch.ops._C_cache_ops.reshape_and_cache,
|
|
(key, value, key_cache, value_cache, slot_mapping, kv_cache_dtype,
|
|
k_scale, v_scale),
|
|
cond=(head_size == HEAD_SIZES[0]))
|
|
ops.reshape_and_cache(key, value, key_cache, value_cache, slot_mapping,
|
|
kv_cache_dtype, k_scale, v_scale)
|
|
|
|
if kv_cache_dtype == "fp8":
|
|
result_key_cache = torch.empty_like(key_cache, dtype=torch.float16)
|
|
ops.convert_fp8(result_key_cache, key_cache)
|
|
result_value_cache = torch.empty_like(value_cache, dtype=torch.float16)
|
|
ops.convert_fp8(result_value_cache, value_cache)
|
|
|
|
# Run the reference implementation.
|
|
reshaped_key = key.reshape(num_tokens, *key_cache[0, :, :, 0, :].shape)
|
|
block_indicies = torch.div(slot_mapping, block_size, rounding_mode="floor")
|
|
block_indicies_lst = block_indicies.cpu().tolist()
|
|
block_offsets = slot_mapping % block_size
|
|
block_offsets_lst = block_offsets.cpu().tolist()
|
|
for i in range(num_tokens):
|
|
block_idx = block_indicies_lst[i]
|
|
block_offset = block_offsets_lst[i]
|
|
cloned_key_cache[block_idx, :, :, block_offset, :] = reshaped_key[i]
|
|
cloned_value_cache[block_idx, :, :, block_offset] = value[i]
|
|
|
|
if kv_cache_dtype == "fp8":
|
|
torch.testing.assert_close(result_key_cache,
|
|
cloned_key_cache,
|
|
atol=0.001,
|
|
rtol=0.1)
|
|
torch.testing.assert_close(result_value_cache,
|
|
cloned_value_cache,
|
|
atol=0.001,
|
|
rtol=0.1)
|
|
else:
|
|
torch.testing.assert_close(key_cache, cloned_key_cache)
|
|
torch.testing.assert_close(value_cache, cloned_value_cache)
|
|
|
|
|
|
@pytest.mark.parametrize("num_tokens", NUM_TOKENS)
|
|
@pytest.mark.parametrize("num_heads", NUM_HEADS)
|
|
@pytest.mark.parametrize("head_size", HEAD_SIZES)
|
|
@pytest.mark.parametrize("block_size", BLOCK_SIZES)
|
|
@pytest.mark.parametrize("num_blocks", NUM_BLOCKS)
|
|
@pytest.mark.parametrize("dtype", DTYPES)
|
|
@pytest.mark.parametrize("seed", SEEDS)
|
|
@pytest.mark.parametrize("device", CUDA_DEVICES)
|
|
@pytest.mark.parametrize("kv_cache_dtype", KV_CACHE_DTYPE)
|
|
@torch.inference_mode()
|
|
def test_reshape_and_cache_flash(
|
|
kv_cache_factory_flashinfer,
|
|
num_tokens: int,
|
|
num_heads: int,
|
|
head_size: int,
|
|
block_size: int,
|
|
num_blocks: int,
|
|
dtype: torch.dtype,
|
|
seed: int,
|
|
device: str,
|
|
kv_cache_dtype: str,
|
|
) -> None:
|
|
current_platform.seed_everything(seed)
|
|
torch.set_default_device(device)
|
|
|
|
# Create a random slot mapping.
|
|
num_slots = block_size * num_blocks
|
|
slot_mapping_lst = random.sample(range(num_slots), num_tokens)
|
|
slot_mapping = torch.tensor(slot_mapping_lst,
|
|
dtype=torch.long,
|
|
device=device)
|
|
|
|
qkv = torch.randn(num_tokens,
|
|
3,
|
|
num_heads,
|
|
head_size,
|
|
dtype=dtype,
|
|
device=device)
|
|
_, key, value = qkv.unbind(dim=1)
|
|
|
|
# Create the KV caches.
|
|
key_caches, value_caches = kv_cache_factory_flashinfer(
|
|
num_blocks,
|
|
block_size,
|
|
1,
|
|
num_heads,
|
|
head_size,
|
|
kv_cache_dtype,
|
|
dtype,
|
|
device=device,
|
|
)
|
|
key_cache, value_cache = key_caches[0].contiguous(
|
|
), value_caches[0].contiguous()
|
|
del key_caches
|
|
del value_caches
|
|
|
|
k_scale = (key.amax() / 256.0).to(torch.float32)
|
|
v_scale = (value.amax() / 256.0).to(torch.float32)
|
|
|
|
# Clone the KV caches.
|
|
if kv_cache_dtype == "fp8":
|
|
cloned_key_cache = torch.empty_like(key_cache, dtype=torch.float16)
|
|
ops.convert_fp8(cloned_key_cache, key_cache, k_scale, kv_cache_dtype)
|
|
cloned_value_cache = torch.empty_like(value_cache, dtype=torch.float16)
|
|
ops.convert_fp8(cloned_value_cache, value_cache, v_scale,
|
|
kv_cache_dtype)
|
|
else:
|
|
cloned_key_cache = key_cache.clone()
|
|
cloned_value_cache = value_cache.clone()
|
|
|
|
# Call the reshape_and_cache kernel.
|
|
opcheck(torch.ops._C_cache_ops.reshape_and_cache_flash,
|
|
(key, value, key_cache, value_cache, slot_mapping, kv_cache_dtype,
|
|
k_scale, v_scale),
|
|
cond=(head_size == HEAD_SIZES[0]))
|
|
ops.reshape_and_cache_flash(key, value, key_cache, value_cache,
|
|
slot_mapping, kv_cache_dtype, k_scale, v_scale)
|
|
|
|
if kv_cache_dtype == "fp8":
|
|
result_key_cache = torch.empty_like(key_cache, dtype=torch.float16)
|
|
ops.convert_fp8(result_key_cache,
|
|
key_cache,
|
|
k_scale.item(),
|
|
kv_dtype=kv_cache_dtype)
|
|
result_value_cache = torch.empty_like(value_cache, dtype=torch.float16)
|
|
ops.convert_fp8(result_value_cache,
|
|
value_cache,
|
|
v_scale.item(),
|
|
kv_dtype=kv_cache_dtype)
|
|
|
|
# Run the reference implementation.
|
|
block_indicies = torch.div(slot_mapping, block_size, rounding_mode="floor")
|
|
block_indicies_lst = block_indicies.cpu().tolist()
|
|
block_offsets = slot_mapping % block_size
|
|
block_offsets_lst = block_offsets.cpu().tolist()
|
|
for i in range(num_tokens):
|
|
block_idx = block_indicies_lst[i]
|
|
block_offset = block_offsets_lst[i]
|
|
cloned_key_cache[block_idx, block_offset, :, :] = key[i]
|
|
cloned_value_cache[block_idx, block_offset, :, :] = value[i]
|
|
|
|
if kv_cache_dtype == "fp8":
|
|
torch.testing.assert_close(result_key_cache,
|
|
cloned_key_cache,
|
|
atol=0.001,
|
|
rtol=0.1)
|
|
torch.testing.assert_close(result_value_cache,
|
|
cloned_value_cache,
|
|
atol=0.001,
|
|
rtol=0.1)
|
|
else:
|
|
torch.testing.assert_close(key_cache, cloned_key_cache)
|
|
torch.testing.assert_close(value_cache, cloned_value_cache)
|
|
|
|
|
|
@pytest.mark.parametrize("direction", COPYING_DIRECTION)
|
|
@pytest.mark.parametrize("num_mappings", NUM_MAPPINGS)
|
|
@pytest.mark.parametrize("num_heads", NUM_HEADS)
|
|
@pytest.mark.parametrize("head_size", HEAD_SIZES)
|
|
@pytest.mark.parametrize("block_size", BLOCK_SIZES)
|
|
@pytest.mark.parametrize("num_blocks", NUM_BLOCKS)
|
|
@pytest.mark.parametrize("dtype", DTYPES)
|
|
@pytest.mark.parametrize("seed", SEEDS)
|
|
@pytest.mark.parametrize("device", CUDA_DEVICES)
|
|
@pytest.mark.parametrize("kv_cache_dtype", KV_CACHE_DTYPE)
|
|
@torch.inference_mode()
|
|
def test_swap_blocks(
|
|
kv_cache_factory,
|
|
direction: Tuple[str, str],
|
|
num_mappings: int,
|
|
num_heads: int,
|
|
head_size: int,
|
|
block_size: int,
|
|
num_blocks: int,
|
|
dtype: torch.dtype,
|
|
seed: int,
|
|
device: str,
|
|
kv_cache_dtype: str,
|
|
) -> None:
|
|
if kv_cache_dtype == "fp8" and "cpu" in direction:
|
|
pytest.skip()
|
|
if kv_cache_dtype == "fp8" and head_size % 16:
|
|
pytest.skip()
|
|
|
|
current_platform.seed_everything(seed)
|
|
|
|
src_device = device if direction[0] == "cuda" else 'cpu'
|
|
dst_device = device if direction[1] == "cuda" else 'cpu'
|
|
|
|
src_blocks = random.sample(range(num_blocks), num_mappings)
|
|
# For the same device, mapping must not overlap
|
|
if src_device == dst_device:
|
|
remaining_blocks = list(set(range(num_blocks)) - set(src_blocks))
|
|
dst_blocks = random.sample(remaining_blocks, num_mappings)
|
|
else:
|
|
dst_blocks = random.sample(range(num_blocks), num_mappings)
|
|
|
|
block_mapping = list(zip(src_blocks, dst_blocks))
|
|
block_mapping_tensor = torch.tensor(block_mapping,
|
|
dtype=torch.int64,
|
|
device="cpu").view(-1, 2)
|
|
|
|
# Create the KV caches on the first device.
|
|
src_key_caches, src_value_caches = kv_cache_factory(
|
|
num_blocks, block_size, 1, num_heads, head_size, kv_cache_dtype, dtype,
|
|
seed, src_device)
|
|
|
|
# Create the KV caches on the second device.
|
|
dist_key_caches, dist_value_caches = kv_cache_factory(
|
|
num_blocks, block_size, 1, num_heads, head_size, kv_cache_dtype, dtype,
|
|
seed, dst_device)
|
|
|
|
src_key_caches_clone = src_key_caches[0].clone()
|
|
src_value_caches_clone = src_value_caches[0].clone()
|
|
|
|
# Call the swap_blocks kernel.
|
|
do_opcheck = (head_size == HEAD_SIZES[0])
|
|
opcheck(torch.ops._C_cache_ops.swap_blocks,
|
|
(src_key_caches[0], dist_key_caches[0], block_mapping_tensor),
|
|
cond=do_opcheck)
|
|
opcheck(torch.ops._C_cache_ops.swap_blocks,
|
|
(src_value_caches[0], dist_value_caches[0], block_mapping_tensor),
|
|
cond=do_opcheck)
|
|
|
|
ops.swap_blocks(src_key_caches[0], dist_key_caches[0],
|
|
block_mapping_tensor)
|
|
ops.swap_blocks(src_value_caches[0], dist_value_caches[0],
|
|
block_mapping_tensor)
|
|
|
|
for src, dst in block_mapping:
|
|
torch.testing.assert_close(src_key_caches_clone[src].cpu(),
|
|
dist_key_caches[0][dst].cpu())
|
|
torch.testing.assert_close(src_value_caches_clone[src].cpu(),
|
|
dist_value_caches[0][dst].cpu())
|
|
|
|
|
|
@pytest.mark.parametrize("num_heads", NUM_HEADS)
|
|
@pytest.mark.parametrize("head_size", HEAD_SIZES)
|
|
@pytest.mark.parametrize("block_size", BLOCK_SIZES)
|
|
@pytest.mark.parametrize("num_blocks", NUM_BLOCKS)
|
|
@pytest.mark.parametrize("dtype", DTYPES)
|
|
@pytest.mark.parametrize("seed", SEEDS)
|
|
@pytest.mark.parametrize("device", CUDA_DEVICES)
|
|
@torch.inference_mode()
|
|
def test_fp8_e4m3_conversion(
|
|
num_heads: int,
|
|
head_size: int,
|
|
block_size: int,
|
|
num_blocks: int,
|
|
dtype: torch.dtype,
|
|
seed: int,
|
|
device: str,
|
|
) -> None:
|
|
current_platform.seed_everything(seed)
|
|
|
|
low = -224.0
|
|
high = 224.0
|
|
shape = (num_blocks, num_heads, head_size, block_size)
|
|
cache = torch.empty(shape, dtype=dtype, device=device)
|
|
cache.uniform_(low, high)
|
|
|
|
cache_fp8 = torch.empty_like(cache, dtype=torch.uint8)
|
|
ops.convert_fp8(cache_fp8, cache)
|
|
|
|
converted_cache = torch.empty_like(cache)
|
|
ops.convert_fp8(converted_cache, cache_fp8)
|
|
|
|
torch.testing.assert_close(cache, converted_cache, atol=0.001, rtol=0.1)
|