mirror of
https://git.datalinker.icu/vllm-project/vllm.git
synced 2025-12-16 07:15:01 +08:00
- **Add SPDX license headers to python source files**
- **Check for SPDX headers using pre-commit**
commit 9d7ef44c3cfb72ca4c32e1c677d99259d10d4745
Author: Russell Bryant <rbryant@redhat.com>
Date: Fri Jan 31 14:18:24 2025 -0500
Add SPDX license headers to python source files
This commit adds SPDX license headers to python source files as
recommended to
the project by the Linux Foundation. These headers provide a concise way
that is
both human and machine readable for communicating license information
for each
source file. It helps avoid any ambiguity about the license of the code
and can
also be easily used by tools to help manage license compliance.
The Linux Foundation runs license scans against the codebase to help
ensure
we are in compliance with the licenses of the code we use, including
dependencies. Having these headers in place helps that tool do its job.
More information can be found on the SPDX site:
- https://spdx.dev/learn/handling-license-info/
Signed-off-by: Russell Bryant <rbryant@redhat.com>
commit 5a1cf1cb3b80759131c73f6a9dddebccac039dea
Author: Russell Bryant <rbryant@redhat.com>
Date: Fri Jan 31 14:36:32 2025 -0500
Check for SPDX headers using pre-commit
Signed-off-by: Russell Bryant <rbryant@redhat.com>
---------
Signed-off-by: Russell Bryant <rbryant@redhat.com>
454 lines
16 KiB
Python
454 lines
16 KiB
Python
# SPDX-License-Identifier: Apache-2.0
|
|
"""Tests for the MOE layers.
|
|
|
|
Run `pytest tests/kernels/test_moe.py`.
|
|
"""
|
|
import pytest
|
|
import torch
|
|
from transformers import MixtralConfig
|
|
from transformers.models.mixtral.modeling_mixtral import MixtralSparseMoeBlock
|
|
|
|
import vllm.model_executor.layers.fused_moe # noqa
|
|
from tests.kernels.utils import (compute_max_diff, opcheck, stack_and_dev,
|
|
torch_moe, torch_moe_single)
|
|
from vllm import _custom_ops as ops
|
|
from vllm.model_executor.layers.fused_moe import fused_moe
|
|
from vllm.model_executor.layers.fused_moe.fused_moe import (
|
|
fused_topk, moe_align_block_size)
|
|
from vllm.model_executor.layers.fused_moe.moe_torch_iterative import (
|
|
fused_moe as iterative_moe)
|
|
from vllm.model_executor.layers.quantization.utils.marlin_utils_test import (
|
|
marlin_quantize)
|
|
from vllm.model_executor.layers.quantization.utils.quant_utils import (
|
|
quantize_weights)
|
|
from vllm.model_executor.models.mixtral import MixtralMoE
|
|
from vllm.platforms import current_platform
|
|
from vllm.scalar_type import scalar_types
|
|
|
|
NUM_EXPERTS = [8, 64]
|
|
TOP_KS = [2, 6]
|
|
|
|
|
|
@pytest.mark.parametrize("m", [1, 33, 64, 222, 1024 * 128])
|
|
@pytest.mark.parametrize("n", [128, 1024, 2048])
|
|
@pytest.mark.parametrize("k", [128, 511, 1024])
|
|
@pytest.mark.parametrize("e", NUM_EXPERTS)
|
|
@pytest.mark.parametrize("topk", TOP_KS)
|
|
@pytest.mark.parametrize("dtype", [torch.float16, torch.bfloat16])
|
|
def test_fused_moe(
|
|
m: int,
|
|
n: int,
|
|
k: int,
|
|
e: int,
|
|
topk: int,
|
|
dtype: torch.dtype,
|
|
):
|
|
a = torch.randn((m, k), device="cuda", dtype=dtype) / 10
|
|
w1 = torch.randn((e, 2 * n, k), device="cuda", dtype=dtype) / 10
|
|
w2 = torch.randn((e, k, n), device="cuda", dtype=dtype) / 10
|
|
|
|
score = torch.randn((m, e), device="cuda", dtype=dtype)
|
|
triton_output = fused_moe(a, w1, w2, score, topk, renormalize=False)
|
|
torch_output = torch_moe(a, w1, w2, score, topk)
|
|
torch.testing.assert_close(triton_output, torch_output, atol=2e-2, rtol=0)
|
|
iterative_output = iterative_moe(a, w1, w2, score, topk, renormalize=False)
|
|
torch.testing.assert_close(iterative_output,
|
|
torch_output,
|
|
atol=2e-2,
|
|
rtol=0)
|
|
|
|
|
|
@pytest.mark.parametrize("m", [1, 32, 222])
|
|
@pytest.mark.parametrize("n", [128, 1024, 2048])
|
|
@pytest.mark.parametrize("k", [128, 1024])
|
|
@pytest.mark.parametrize("e", NUM_EXPERTS)
|
|
@pytest.mark.parametrize("topk", TOP_KS)
|
|
@pytest.mark.parametrize("dtype", [torch.float16, torch.bfloat16])
|
|
@pytest.mark.parametrize("group_size", [64, 128])
|
|
@pytest.mark.parametrize("has_zp", [True, False])
|
|
@pytest.mark.parametrize("weight_bits", [4, 8])
|
|
def test_fused_moe_wn16(m: int, n: int, k: int, e: int, topk: int,
|
|
dtype: torch.dtype, group_size: int, has_zp: bool,
|
|
weight_bits: int):
|
|
print(m, n, k, e, topk, dtype, group_size, has_zp, weight_bits)
|
|
a = torch.randn((m, k), device="cuda", dtype=dtype) / 10
|
|
w1 = torch.randn((e, 2 * n, k), device="cuda", dtype=dtype) / 10
|
|
w2 = torch.randn((e, k, n), device="cuda", dtype=dtype) / 10
|
|
score = torch.randn((m, e), device="cuda", dtype=dtype)
|
|
|
|
if weight_bits == 4:
|
|
pack_factor = 2
|
|
quant_type = scalar_types.uint4 if has_zp else scalar_types.uint4b8
|
|
elif weight_bits == 8:
|
|
pack_factor = 1
|
|
quant_type = scalar_types.uint8 if has_zp else scalar_types.uint8b128
|
|
|
|
w1_ref = w1.clone()
|
|
w2_ref = w2.clone()
|
|
w1_qweight = torch.empty((e, 2 * n, k // pack_factor),
|
|
device="cuda",
|
|
dtype=torch.uint8)
|
|
w2_qweight = torch.empty((e, k, n // pack_factor),
|
|
device="cuda",
|
|
dtype=torch.uint8)
|
|
w1_scales = torch.empty((e, 2 * n, k // group_size),
|
|
device="cuda",
|
|
dtype=dtype)
|
|
w2_scales = torch.empty((e, k, n // group_size),
|
|
device="cuda",
|
|
dtype=dtype)
|
|
w1_qzeros = torch.empty((e, 2 * n // pack_factor, k // group_size),
|
|
device="cuda",
|
|
dtype=torch.uint8)
|
|
w2_qzeros = torch.empty((e, k // pack_factor, n // group_size),
|
|
device="cuda",
|
|
dtype=torch.uint8)
|
|
|
|
for i in range(e * 2):
|
|
expert_id = i % e
|
|
if i // e == 0:
|
|
w, w_ref, w_qweight, w_scales, w_qzeros = \
|
|
w1, w1_ref, w1_qweight, w1_scales, w1_qzeros
|
|
else:
|
|
w, w_ref, w_qweight, w_scales, w_qzeros = \
|
|
w2, w2_ref, w2_qweight, w2_scales, w2_qzeros
|
|
weight, qweight, scales, qzeros = quantize_weights(
|
|
w[expert_id].T, quant_type, group_size, has_zp, False)
|
|
weight = weight.T
|
|
qweight = qweight.T.contiguous().to(torch.uint8)
|
|
scales = scales.T
|
|
if has_zp:
|
|
qzeros = qzeros.T.contiguous().to(torch.uint8)
|
|
if weight_bits == 4:
|
|
qweight = qweight[:, 1::2] * 16 + qweight[:, ::2]
|
|
if has_zp:
|
|
qzeros = qzeros[1::2, :] * 16 + qzeros[::2, :]
|
|
|
|
w_ref[expert_id] = weight
|
|
w_qweight[expert_id] = qweight
|
|
w_scales[expert_id] = scales
|
|
if has_zp:
|
|
w_qzeros[expert_id] = qzeros
|
|
|
|
triton_output = fused_moe(a,
|
|
w1_qweight,
|
|
w2_qweight,
|
|
score,
|
|
topk,
|
|
renormalize=False,
|
|
use_int4_w4a16=weight_bits == 4,
|
|
use_int8_w8a16=weight_bits == 8,
|
|
w1_scale=w1_scales,
|
|
w2_scale=w2_scales,
|
|
w1_zp=w1_qzeros if has_zp else None,
|
|
w2_zp=w2_qzeros if has_zp else None,
|
|
block_shape=[0, group_size])
|
|
torch_output = torch_moe(a, w1_ref, w2_ref, score, topk)
|
|
torch.testing.assert_close(triton_output, torch_output, atol=2e-2, rtol=0)
|
|
|
|
|
|
@pytest.mark.parametrize("dtype",
|
|
[torch.float32, torch.float16, torch.bfloat16])
|
|
@torch.inference_mode()
|
|
def test_mixtral_moe(dtype: torch.dtype):
|
|
"""Make sure our Mixtral MoE implementation agrees with the one from
|
|
huggingface."""
|
|
|
|
# Instantiate our and huggingface's MoE blocks
|
|
config = MixtralConfig()
|
|
hf_moe = MixtralSparseMoeBlock(config).to(dtype).to("cuda")
|
|
vllm_moe = MixtralMoE(
|
|
num_experts=config.num_local_experts,
|
|
top_k=config.num_experts_per_tok,
|
|
hidden_size=config.hidden_size,
|
|
intermediate_size=config.intermediate_size,
|
|
params_dtype=dtype,
|
|
tp_size=1,
|
|
).cuda()
|
|
|
|
# Load the weights
|
|
vllm_moe.gate.weight.data[:] = hf_moe.gate.weight.data
|
|
for i in range(config.num_local_experts):
|
|
weights = (hf_moe.experts[i].w1.weight.data,
|
|
hf_moe.experts[i].w3.weight.data)
|
|
vllm_moe.experts.w13_weight[i][:] = torch.cat(weights, dim=0)
|
|
vllm_moe.experts.w2_weight[i][:] = hf_moe.experts[i].w2.weight.data
|
|
|
|
# Generate input batch of dimensions [batch_size, seq_len, hidden_dim]
|
|
hf_inputs = torch.randn((1, 64, config.hidden_size)).to(dtype).to("cuda")
|
|
# vLLM uses 1D query [num_tokens, hidden_dim]
|
|
vllm_inputs = hf_inputs.flatten(0, 1)
|
|
|
|
# Run forward passes for both MoE blocks
|
|
hf_states, _ = hf_moe.forward(hf_inputs)
|
|
vllm_states = vllm_moe.forward(vllm_inputs)
|
|
|
|
mixtral_moe_tol = {
|
|
torch.float32: 1e-3,
|
|
torch.float16: 1e-3,
|
|
torch.bfloat16: 1e-2,
|
|
}
|
|
|
|
torch.testing.assert_close(hf_states.flatten(0, 1),
|
|
vllm_states,
|
|
rtol=mixtral_moe_tol[dtype],
|
|
atol=mixtral_moe_tol[dtype])
|
|
|
|
|
|
@pytest.mark.parametrize("m", [1, 33, 64, 222])
|
|
@pytest.mark.parametrize("n", [128, 2048])
|
|
@pytest.mark.parametrize("k", [128, 1024])
|
|
@pytest.mark.parametrize("e", NUM_EXPERTS)
|
|
@pytest.mark.parametrize("topk", TOP_KS)
|
|
@pytest.mark.parametrize("group_size", [-1, 32, 128])
|
|
@pytest.mark.parametrize("act_order", [True, False])
|
|
@pytest.mark.parametrize("num_bits", [4, 8])
|
|
@pytest.mark.parametrize("is_k_full", [True, False])
|
|
@pytest.mark.skipif(current_platform.is_rocm(), reason="Skip for rocm")
|
|
def test_fused_marlin_moe(
|
|
m: int,
|
|
n: int,
|
|
k: int,
|
|
e: int,
|
|
topk: int,
|
|
group_size: int,
|
|
act_order: bool,
|
|
num_bits: int,
|
|
is_k_full: bool,
|
|
):
|
|
current_platform.seed_everything(7)
|
|
|
|
# Filter act_order
|
|
if act_order:
|
|
if group_size == -1:
|
|
return
|
|
if group_size in (k, n):
|
|
return
|
|
else:
|
|
if not is_k_full:
|
|
return
|
|
|
|
quant_type = (scalar_types.uint4b8
|
|
if num_bits == 4 else scalar_types.uint8b128)
|
|
dtype = torch.float16
|
|
a = torch.randn((m, k), device="cuda", dtype=dtype) / 10
|
|
w1 = torch.randn((e, 2 * n, k), device="cuda", dtype=dtype) / 10
|
|
w2 = torch.randn((e, k, n), device="cuda", dtype=dtype) / 10
|
|
|
|
w_ref1_l = []
|
|
qweight1_l = []
|
|
scales1_l = []
|
|
g_idx1_l = []
|
|
sort_indices1_l = []
|
|
|
|
for i in range(w1.shape[0]):
|
|
test_perm = torch.randperm(k)
|
|
w_ref1, qweight1, scales1, g_idx1, sort_indices1, _ = marlin_quantize(
|
|
w1[i].transpose(1, 0), quant_type, group_size, act_order,
|
|
test_perm)
|
|
w_ref1_l.append(w_ref1)
|
|
qweight1_l.append(qweight1)
|
|
scales1_l.append(scales1)
|
|
g_idx1_l.append(g_idx1)
|
|
sort_indices1_l.append(sort_indices1)
|
|
|
|
w_ref1 = stack_and_dev(w_ref1_l)
|
|
qweight1 = stack_and_dev(qweight1_l).contiguous()
|
|
scales1 = stack_and_dev(scales1_l)
|
|
g_idx1 = stack_and_dev(g_idx1_l)
|
|
sort_indices1 = stack_and_dev(sort_indices1_l)
|
|
|
|
w_ref2_l = []
|
|
qweight2_l = []
|
|
scales2_l = []
|
|
g_idx2_l = []
|
|
sort_indices2_l = []
|
|
|
|
for i in range(w2.shape[0]):
|
|
test_perm = torch.randperm(n)
|
|
w_ref2, qweight2, scales2, g_idx2, sort_indices2, _ = marlin_quantize(
|
|
w2[i].transpose(1, 0), quant_type, group_size, act_order,
|
|
test_perm)
|
|
w_ref2_l.append(w_ref2)
|
|
qweight2_l.append(qweight2)
|
|
scales2_l.append(scales2)
|
|
g_idx2_l.append(g_idx2)
|
|
sort_indices2_l.append(sort_indices2)
|
|
|
|
w_ref2 = stack_and_dev(w_ref2_l)
|
|
qweight2 = stack_and_dev(qweight2_l).contiguous()
|
|
scales2 = stack_and_dev(scales2_l)
|
|
g_idx2 = stack_and_dev(g_idx2_l)
|
|
sort_indices2 = stack_and_dev(sort_indices2_l)
|
|
|
|
score = torch.randn((m, e), device="cuda", dtype=dtype)
|
|
|
|
topk_weights, topk_ids = fused_topk(a, score, topk, False)
|
|
|
|
triton_output = fused_moe(
|
|
a,
|
|
w_ref1.transpose(1, 2).contiguous(),
|
|
w_ref2.transpose(1, 2).contiguous(),
|
|
score,
|
|
topk,
|
|
renormalize=False,
|
|
)
|
|
marlin_output = torch.ops.vllm.fused_marlin_moe(
|
|
a,
|
|
qweight1,
|
|
qweight2,
|
|
scales1,
|
|
scales2,
|
|
score,
|
|
topk_weights,
|
|
topk_ids,
|
|
g_idx1=g_idx1,
|
|
g_idx2=g_idx2,
|
|
sort_indices1=sort_indices1,
|
|
sort_indices2=sort_indices2,
|
|
num_bits=num_bits,
|
|
is_k_full=is_k_full,
|
|
)
|
|
|
|
assert compute_max_diff(marlin_output, triton_output) < 4e-2
|
|
|
|
if ops.supports_moe_ops:
|
|
token_expert_indicies = torch.empty(m,
|
|
topk,
|
|
dtype=torch.int32,
|
|
device=a.device)
|
|
|
|
opcheck(torch.ops._moe_C.topk_softmax, (
|
|
topk_weights,
|
|
topk_ids,
|
|
token_expert_indicies,
|
|
score.float(),
|
|
))
|
|
|
|
block_size_m = 4
|
|
|
|
sorted_token_ids, _, _ = moe_align_block_size(topk_ids, block_size_m,
|
|
e)
|
|
|
|
max_workspace_size = ((m + 255) // 256) * (max(2 * n, k) // 64) * 16
|
|
workspace = torch.zeros(max_workspace_size,
|
|
dtype=torch.int,
|
|
device="cuda",
|
|
requires_grad=False)
|
|
|
|
zp = torch.empty((0, 0),
|
|
dtype=dtype,
|
|
device="cuda",
|
|
requires_grad=False)
|
|
opcheck(torch.ops._moe_C.marlin_gemm_moe,
|
|
(a, qweight1, sorted_token_ids, topk_weights, topk_ids,
|
|
scales1, zp, g_idx1, sort_indices1, workspace, quant_type.id,
|
|
m, 2 * n, k, True, e, topk, block_size_m, True, False))
|
|
|
|
|
|
@pytest.mark.skip("This test is here for the sake of debugging, "
|
|
"don't run it in automated tests.")
|
|
@pytest.mark.parametrize("m", [64, 512, 222, 33, 1])
|
|
@pytest.mark.parametrize("n", [128, 2048, 256, 1024])
|
|
@pytest.mark.parametrize("k", [128, 1024, 512])
|
|
@pytest.mark.parametrize("e", [8, 64])
|
|
@pytest.mark.parametrize("topk", [2, 6])
|
|
@pytest.mark.parametrize("group_size", [-1, 32, 64, 128])
|
|
@pytest.mark.parametrize("act_order", [True, False])
|
|
@pytest.mark.parametrize("num_bits", [4, 8])
|
|
@pytest.mark.parametrize("is_k_full", [True, False])
|
|
@pytest.mark.skipif(current_platform.is_rocm(), reason="Skip for rocm")
|
|
def test_single_marlin_moe_multiply(
|
|
m: int,
|
|
n: int,
|
|
k: int,
|
|
e: int,
|
|
topk: int,
|
|
group_size: int,
|
|
act_order: bool,
|
|
num_bits: int,
|
|
is_k_full: bool,
|
|
):
|
|
|
|
# Filter act_order
|
|
if act_order:
|
|
if group_size == -1:
|
|
return
|
|
if group_size == k:
|
|
return
|
|
else:
|
|
if not is_k_full:
|
|
return
|
|
|
|
quant_type = (scalar_types.uint4b8
|
|
if num_bits == 4 else scalar_types.uint8b128)
|
|
dtype = torch.float16
|
|
a = torch.randn((m, k), device="cuda", dtype=dtype) / 10
|
|
w = torch.randn((e, n, k), device="cuda", dtype=dtype) / 10
|
|
|
|
w_ref_l = []
|
|
qweights_l = []
|
|
scales_l = []
|
|
g_idx_l = []
|
|
sort_indices_l = []
|
|
|
|
for i in range(w.shape[0]):
|
|
test_perm = torch.randperm(k)
|
|
w_ref, qweight, scales, g_idx, sort_indices, _ = marlin_quantize(
|
|
w[i].transpose(1, 0), quant_type, group_size, act_order, test_perm)
|
|
w_ref_l.append(w_ref)
|
|
qweights_l.append(qweight)
|
|
scales_l.append(scales)
|
|
g_idx_l.append(g_idx)
|
|
sort_indices_l.append(sort_indices)
|
|
|
|
w_ref = stack_and_dev(w_ref_l)
|
|
qweight = stack_and_dev(qweights_l).contiguous()
|
|
scales = stack_and_dev(scales_l)
|
|
g_idx = stack_and_dev(g_idx_l)
|
|
sort_indices = stack_and_dev(sort_indices_l)
|
|
|
|
score = torch.randn((m, e), device="cuda", dtype=dtype)
|
|
marlin_output = torch.ops.vllm.single_marlin_moe(
|
|
a,
|
|
qweight,
|
|
scales,
|
|
score,
|
|
topk,
|
|
renormalize=False,
|
|
g_idx=g_idx,
|
|
sort_indices=sort_indices,
|
|
num_bits=num_bits,
|
|
is_k_full=is_k_full,
|
|
)
|
|
|
|
torch_output = torch_moe_single(a, w_ref.transpose(1, 2), score, topk)
|
|
|
|
assert compute_max_diff(marlin_output, torch_output) < 1e-2
|
|
|
|
|
|
def test_moe_align_block_size_opcheck():
|
|
num_experts = 4
|
|
block_size = 4
|
|
topk_ids = torch.randint(0,
|
|
num_experts, (3, 4),
|
|
dtype=torch.int32,
|
|
device='cuda')
|
|
|
|
max_num_tokens_padded = topk_ids.numel() + num_experts * (block_size - 1)
|
|
sorted_ids = torch.empty((max_num_tokens_padded, ),
|
|
dtype=torch.int32,
|
|
device=topk_ids.device)
|
|
sorted_ids.fill_(topk_ids.numel())
|
|
max_num_m_blocks = max_num_tokens_padded // block_size
|
|
expert_ids = torch.empty((max_num_m_blocks, ),
|
|
dtype=torch.int32,
|
|
device=topk_ids.device)
|
|
num_tokens_post_pad = torch.empty((1),
|
|
dtype=torch.int32,
|
|
device=topk_ids.device)
|
|
|
|
opcheck(torch.ops._moe_C.moe_align_block_size,
|
|
(topk_ids, num_experts, block_size, sorted_ids, expert_ids,
|
|
num_tokens_post_pad))
|