mirror of
https://git.datalinker.icu/vllm-project/vllm.git
synced 2025-12-11 12:24:56 +08:00
- **Add SPDX license headers to python source files**
- **Check for SPDX headers using pre-commit**
commit 9d7ef44c3cfb72ca4c32e1c677d99259d10d4745
Author: Russell Bryant <rbryant@redhat.com>
Date: Fri Jan 31 14:18:24 2025 -0500
Add SPDX license headers to python source files
This commit adds SPDX license headers to python source files as
recommended to
the project by the Linux Foundation. These headers provide a concise way
that is
both human and machine readable for communicating license information
for each
source file. It helps avoid any ambiguity about the license of the code
and can
also be easily used by tools to help manage license compliance.
The Linux Foundation runs license scans against the codebase to help
ensure
we are in compliance with the licenses of the code we use, including
dependencies. Having these headers in place helps that tool do its job.
More information can be found on the SPDX site:
- https://spdx.dev/learn/handling-license-info/
Signed-off-by: Russell Bryant <rbryant@redhat.com>
commit 5a1cf1cb3b80759131c73f6a9dddebccac039dea
Author: Russell Bryant <rbryant@redhat.com>
Date: Fri Jan 31 14:36:32 2025 -0500
Check for SPDX headers using pre-commit
Signed-off-by: Russell Bryant <rbryant@redhat.com>
---------
Signed-off-by: Russell Bryant <rbryant@redhat.com>
315 lines
9.8 KiB
Python
315 lines
9.8 KiB
Python
# SPDX-License-Identifier: Apache-2.0
|
|
|
|
from typing import Dict, List, Optional
|
|
|
|
import torch
|
|
|
|
from vllm.lora.lora import LoRALayerWeights, PackedLoRALayerWeights
|
|
|
|
|
|
class DummyLoRAManager:
|
|
|
|
def __init__(self, device: torch.device = "cuda:0"):
|
|
super().__init__()
|
|
self._loras: Dict[str, LoRALayerWeights] = {}
|
|
self._device = device
|
|
|
|
def set_module_lora(self, module_name: str, lora: LoRALayerWeights):
|
|
self._loras[module_name] = lora
|
|
|
|
def get_module_lora(self, module_name: str) -> LoRALayerWeights:
|
|
return self._loras[module_name]
|
|
|
|
def init_random_lora(
|
|
self,
|
|
module_name: str,
|
|
weight: torch.Tensor,
|
|
rank: int = 8,
|
|
generate_embeddings_tensor: int = 0,
|
|
):
|
|
lora = LoRALayerWeights(
|
|
module_name,
|
|
rank=rank,
|
|
lora_alpha=1,
|
|
lora_a=torch.rand([weight.shape[1], rank],
|
|
dtype=weight.dtype,
|
|
device=self._device),
|
|
lora_b=torch.rand([rank, weight.shape[0]],
|
|
dtype=weight.dtype,
|
|
device=self._device),
|
|
)
|
|
if generate_embeddings_tensor:
|
|
lora.embeddings_tensor = torch.rand(
|
|
5,
|
|
generate_embeddings_tensor,
|
|
dtype=weight.dtype,
|
|
device=self._device,
|
|
)
|
|
self.set_module_lora(module_name, lora)
|
|
|
|
return lora
|
|
|
|
def init_lora(
|
|
self,
|
|
module_name: str,
|
|
input_dim: int,
|
|
output_dim: int,
|
|
rank=8,
|
|
noop=False,
|
|
embeddings_tensor=None,
|
|
):
|
|
lora = LoRALayerWeights(
|
|
module_name,
|
|
rank=rank,
|
|
lora_alpha=1,
|
|
lora_a=torch.rand([input_dim, rank], device="cuda"),
|
|
lora_b=torch.rand([rank, output_dim], device="cuda"),
|
|
embeddings_tensor=embeddings_tensor,
|
|
)
|
|
self.set_module_lora(module_name, lora)
|
|
return lora
|
|
|
|
def reset_lora(self):
|
|
self._loras = {}
|
|
|
|
def init_packed_lora(
|
|
self,
|
|
module_name: str,
|
|
input_dim: int,
|
|
output_dims: List[int],
|
|
noop_lora_index: Optional[List[int]] = None,
|
|
rank: int = 8,
|
|
):
|
|
base_loras: List[LoRALayerWeights] = []
|
|
noop_lora_index_set = set(noop_lora_index or [])
|
|
|
|
for i, out_dim in enumerate(output_dims):
|
|
base_lora = self.init_lora(
|
|
module_name + "_000_" + str(i),
|
|
input_dim,
|
|
out_dim,
|
|
rank=rank,
|
|
noop=i in noop_lora_index_set,
|
|
)
|
|
base_loras.append(base_lora)
|
|
packed_lora = PackedLoRALayerWeights.pack(base_loras)
|
|
self.set_module_lora(module_name, packed_lora)
|
|
return packed_lora
|
|
|
|
|
|
def assert_close(a, b):
|
|
rtol, atol = {
|
|
torch.float16: (6e-2, 6e-2),
|
|
torch.bfloat16: (6e-2, 6e-2),
|
|
torch.float32: (1e-2, 1e-2),
|
|
}[a.dtype]
|
|
torch.testing.assert_close(a, b, rtol=rtol, atol=atol)
|
|
|
|
|
|
def generate_data(
|
|
batches,
|
|
hidden_size,
|
|
lora_nums,
|
|
max_rank,
|
|
seq_length,
|
|
dtype,
|
|
op_type,
|
|
device,
|
|
):
|
|
seq_len_tensor = torch.randint(seq_length, seq_length + 1,
|
|
(batches, )).to(device)
|
|
b_seq_start_loc = torch.cumsum(
|
|
torch.tensor([0] + seq_len_tensor[:-1].tolist(), dtype=torch.long),
|
|
dim=0,
|
|
).to(device)
|
|
total_tokens = seq_len_tensor.sum()
|
|
if op_type == "shrink":
|
|
inputs_tensor = torch.rand((total_tokens, hidden_size),
|
|
dtype=dtype).to(device)
|
|
lora_weights = torch.rand(
|
|
(lora_nums, max_rank, hidden_size), # col-major
|
|
dtype=dtype,
|
|
).to(device)
|
|
# shrink op need atomic_add, so output is initinized by 0
|
|
ref_out_tensor = torch.zeros((total_tokens, max_rank),
|
|
dtype=dtype,
|
|
device=inputs_tensor.device)
|
|
# NOTE shrink kernel using torch.float32 as output type
|
|
our_out_tensor = torch.zeros((total_tokens, max_rank),
|
|
dtype=torch.float32).to(device)
|
|
else:
|
|
inputs_tensor = torch.rand(
|
|
(total_tokens, max_rank),
|
|
dtype=dtype,
|
|
).to(device)
|
|
lora_weights = torch.rand(
|
|
(lora_nums, hidden_size, max_rank), # col-major
|
|
dtype=dtype,
|
|
).to(device)
|
|
# expand op needs to complete y+=a@lora_b, so output is
|
|
# initinized randomly
|
|
ref_out_tensor = torch.rand(
|
|
(total_tokens, hidden_size),
|
|
dtype=dtype,
|
|
).to(device)
|
|
# Ensure the same input.
|
|
our_out_tensor = ref_out_tensor.clone()
|
|
lora_indices_tensor = torch.randint(0,
|
|
lora_nums - 1 if lora_nums > 1 else 1,
|
|
(batches, )).to(device)
|
|
indices = torch.zeros((total_tokens), dtype=torch.long).to(device)
|
|
current_offset = 0
|
|
for b_id in range(batches):
|
|
lora_index = lora_indices_tensor[b_id]
|
|
indices[current_offset:current_offset +
|
|
seq_len_tensor[b_id]].copy_(lora_index)
|
|
current_offset += seq_len_tensor[b_id].item()
|
|
return (
|
|
inputs_tensor,
|
|
lora_weights,
|
|
our_out_tensor,
|
|
ref_out_tensor,
|
|
b_seq_start_loc,
|
|
lora_indices_tensor,
|
|
seq_len_tensor,
|
|
indices,
|
|
)
|
|
|
|
|
|
def generate_data_for_expand_nslices(
|
|
batches,
|
|
hidden_size,
|
|
lora_nums,
|
|
max_rank,
|
|
seq_length,
|
|
dtype,
|
|
nslices,
|
|
device,
|
|
):
|
|
seq_len_tensor = torch.randint(seq_length, seq_length + 1,
|
|
(batches, )).to(device)
|
|
b_seq_start_loc = torch.cumsum(
|
|
torch.tensor([0] + seq_len_tensor[:-1].tolist(), dtype=torch.long),
|
|
dim=0,
|
|
).to(device)
|
|
total_tokens = seq_len_tensor.sum()
|
|
inputs_tensor = torch.rand(
|
|
(total_tokens, max_rank),
|
|
dtype=dtype,
|
|
).to(device)
|
|
lora_weights_lst = []
|
|
for _ in range(nslices):
|
|
lora_weights_lst.append(
|
|
torch.rand(
|
|
(lora_nums, hidden_size, max_rank), # col-major
|
|
dtype=dtype,
|
|
).to(device))
|
|
# expand op needs to complete y+=a@lora_b, so output is
|
|
# initinized randomly
|
|
ref_out_tensor = torch.rand((total_tokens, hidden_size * nslices),
|
|
dtype=dtype).to(device)
|
|
# Ensure the same input.
|
|
our_out_tensor = ref_out_tensor.clone()
|
|
lora_indices_tensor = torch.randint(0,
|
|
lora_nums - 1 if lora_nums > 1 else 1,
|
|
(batches, ))
|
|
indices = torch.zeros((total_tokens), dtype=torch.long).to(device)
|
|
current_offset = 0
|
|
for b_id in range(batches):
|
|
lora_index = lora_indices_tensor[b_id]
|
|
indices[current_offset:current_offset +
|
|
seq_len_tensor[b_id]] = (lora_index.item())
|
|
current_offset += seq_len_tensor[b_id].item()
|
|
|
|
lora_indices_tensor = lora_indices_tensor.to(device)
|
|
return (
|
|
inputs_tensor,
|
|
lora_weights_lst,
|
|
our_out_tensor,
|
|
ref_out_tensor,
|
|
b_seq_start_loc,
|
|
lora_indices_tensor,
|
|
seq_len_tensor,
|
|
indices,
|
|
)
|
|
|
|
|
|
def generate_data_for_nslices(
|
|
batches,
|
|
hidden_size,
|
|
lora_nums,
|
|
max_rank,
|
|
seq_length,
|
|
nslices,
|
|
dtype,
|
|
op_type,
|
|
device,
|
|
):
|
|
seq_len_tensor = torch.randint(seq_length, seq_length + 1,
|
|
(batches, )).to(device)
|
|
b_seq_start_loc = torch.cumsum(
|
|
torch.tensor([0] + seq_len_tensor[:-1].tolist(), dtype=torch.long),
|
|
dim=0,
|
|
).to(device)
|
|
total_tokens = seq_len_tensor.sum()
|
|
|
|
lora_weights_lst = []
|
|
if op_type == "shrink":
|
|
|
|
inputs_tensor = torch.rand((total_tokens, hidden_size),
|
|
dtype=dtype).to(device)
|
|
|
|
for _ in range(nslices):
|
|
if op_type == "shrink":
|
|
lora_weights_lst.append(
|
|
torch.rand(
|
|
(lora_nums, max_rank, hidden_size), # col-major
|
|
dtype=dtype,
|
|
).to(device))
|
|
# NOTE shrink kernel using torch.float32 as output type
|
|
# shrink op need atomic_add, so output is initinized by 0
|
|
our_out_tensor = torch.zeros(
|
|
(nslices, total_tokens, max_rank),
|
|
dtype=torch.float32,
|
|
).to(device)
|
|
else:
|
|
inputs_tensor = torch.rand(
|
|
(nslices, total_tokens, max_rank),
|
|
dtype=dtype,
|
|
).to(device)
|
|
for _ in range(nslices):
|
|
lora_weights_lst.append(
|
|
torch.rand(
|
|
(lora_nums, hidden_size, max_rank), # col-major
|
|
dtype=dtype,
|
|
).to(device))
|
|
# expand op needs to complete y+=a@lora_b, so output is
|
|
# initinized randomly
|
|
our_out_tensor = torch.rand((total_tokens, hidden_size * nslices),
|
|
dtype=dtype).to(device)
|
|
|
|
# Ensure the same input.
|
|
ref_out_tensor = our_out_tensor.clone()
|
|
lora_indices_tensor = torch.randint(0,
|
|
lora_nums - 1 if lora_nums > 1 else 1,
|
|
(batches, ))
|
|
indices = torch.zeros((total_tokens), dtype=torch.long).to(device)
|
|
current_offset = 0
|
|
for b_id in range(batches):
|
|
lora_index = lora_indices_tensor[b_id]
|
|
indices[current_offset:current_offset +
|
|
seq_len_tensor[b_id]] = (lora_index.item())
|
|
current_offset += seq_len_tensor[b_id].item()
|
|
|
|
lora_indices_tensor = lora_indices_tensor.to(device)
|
|
return (
|
|
inputs_tensor,
|
|
lora_weights_lst,
|
|
our_out_tensor,
|
|
ref_out_tensor,
|
|
b_seq_start_loc,
|
|
lora_indices_tensor,
|
|
seq_len_tensor,
|
|
indices,
|
|
)
|