mirror of
https://git.datalinker.icu/vllm-project/vllm.git
synced 2025-12-15 23:26:03 +08:00
- **Add SPDX license headers to python source files**
- **Check for SPDX headers using pre-commit**
commit 9d7ef44c3cfb72ca4c32e1c677d99259d10d4745
Author: Russell Bryant <rbryant@redhat.com>
Date: Fri Jan 31 14:18:24 2025 -0500
Add SPDX license headers to python source files
This commit adds SPDX license headers to python source files as
recommended to
the project by the Linux Foundation. These headers provide a concise way
that is
both human and machine readable for communicating license information
for each
source file. It helps avoid any ambiguity about the license of the code
and can
also be easily used by tools to help manage license compliance.
The Linux Foundation runs license scans against the codebase to help
ensure
we are in compliance with the licenses of the code we use, including
dependencies. Having these headers in place helps that tool do its job.
More information can be found on the SPDX site:
- https://spdx.dev/learn/handling-license-info/
Signed-off-by: Russell Bryant <rbryant@redhat.com>
commit 5a1cf1cb3b80759131c73f6a9dddebccac039dea
Author: Russell Bryant <rbryant@redhat.com>
Date: Fri Jan 31 14:36:32 2025 -0500
Check for SPDX headers using pre-commit
Signed-off-by: Russell Bryant <rbryant@redhat.com>
---------
Signed-off-by: Russell Bryant <rbryant@redhat.com>
180 lines
6.4 KiB
Python
180 lines
6.4 KiB
Python
# SPDX-License-Identifier: Apache-2.0
|
|
"""Tests for Idefics3's multimodal preprocessing kwargs."""
|
|
from typing import Optional
|
|
|
|
import pytest
|
|
import torch
|
|
from transformers import AutoImageProcessor, AutoTokenizer
|
|
|
|
from vllm.inputs import InputContext, token_inputs
|
|
from vllm.multimodal import MultiModalRegistry
|
|
|
|
from ....conftest import _ImageAssets
|
|
from ...utils import build_model_context
|
|
|
|
models = ["HuggingFaceM4/Idefics3-8B-Llama3"]
|
|
|
|
|
|
# Wrap lazy imports to avoid initializing CUDA during test collection
|
|
@pytest.fixture()
|
|
def input_processor_for_idefics3():
|
|
from vllm.model_executor.models.idefics3 import (
|
|
input_processor_for_idefics3)
|
|
return input_processor_for_idefics3
|
|
|
|
|
|
@pytest.fixture()
|
|
def dummy_data_for_idefics3():
|
|
from vllm.model_executor.models.idefics3 import dummy_data_for_idefics3
|
|
return dummy_data_for_idefics3
|
|
|
|
|
|
@pytest.fixture()
|
|
def get_max_idefics3_image_tokens():
|
|
from vllm.model_executor.models.idefics3 import (
|
|
get_max_idefics3_image_tokens)
|
|
return get_max_idefics3_image_tokens
|
|
|
|
|
|
@pytest.mark.parametrize("model", models)
|
|
@pytest.mark.parametrize("longest_edge", [None, 168, 336, 400, 2 * 336])
|
|
def test_input_mapper_override(model: str, image_assets: _ImageAssets,
|
|
longest_edge: Optional[int]):
|
|
"""Ensure that the [default] input mapper handles size properly."""
|
|
|
|
mm_processor_kwargs = {
|
|
"size": {
|
|
"longest_edge": longest_edge
|
|
}
|
|
} if longest_edge is not None else {}
|
|
ctx = build_model_context(
|
|
model_name=model,
|
|
tokenizer_name=model,
|
|
trust_remote_code=True,
|
|
mm_processor_kwargs=mm_processor_kwargs,
|
|
)
|
|
|
|
hf_processor = AutoImageProcessor.from_pretrained(model,
|
|
trust_remote_code=True,
|
|
**mm_processor_kwargs)
|
|
|
|
mm_registry = MultiModalRegistry()
|
|
mm_registry.init_mm_limits_per_prompt(ctx.model_config)
|
|
|
|
image = image_assets[0].pil_image
|
|
hf_result = hf_processor.preprocess(
|
|
image,
|
|
return_tensors="pt",
|
|
)
|
|
|
|
vllm_result = mm_registry.map_input(
|
|
ctx.model_config,
|
|
{"image": image},
|
|
)
|
|
|
|
assert torch.all(hf_result["pixel_values"] == vllm_result["pixel_values"])
|
|
|
|
|
|
@pytest.mark.parametrize("model", models)
|
|
@pytest.mark.parametrize("longest_edge, expected_max_tokens", [
|
|
(None, 2873),
|
|
(168, 169),
|
|
(336, 169),
|
|
(400, 338),
|
|
(672, 338),
|
|
])
|
|
def test_max_tokens_override(get_max_idefics3_image_tokens, model: str,
|
|
longest_edge: Optional[int],
|
|
expected_max_tokens: int):
|
|
"""Ensure get_max_idefics3_image_tokens handles mm_processor_kwargs."""
|
|
size = {"longest_edge": longest_edge} if longest_edge is not None else None
|
|
ctx = build_model_context(
|
|
model_name=model,
|
|
tokenizer_name=model,
|
|
trust_remote_code=True,
|
|
mm_processor_kwargs=None,
|
|
)
|
|
|
|
actual_max_tokens = get_max_idefics3_image_tokens(
|
|
ctx=InputContext(ctx.model_config),
|
|
size=size,
|
|
)
|
|
|
|
assert expected_max_tokens == actual_max_tokens
|
|
|
|
|
|
@pytest.mark.parametrize("model", models)
|
|
@pytest.mark.parametrize("longest_edge, toks_per_img, num_imgs", [
|
|
(168, 169, 1),
|
|
(168, 169, 2),
|
|
(400, 338, 1),
|
|
(400, 338, 2),
|
|
])
|
|
def test_dummy_data_override(dummy_data_for_idefics3, model: str,
|
|
longest_edge: int, toks_per_img: int,
|
|
num_imgs: int):
|
|
"""Ensure dummy_data_for_idefics3 handles num_crops properly."""
|
|
# Same as the previous test - don't initialize mm_processor_kwargs
|
|
# in this test and assume that the kwargs will be correctly expanded by
|
|
# the partial when calling the dummy data func.
|
|
size = {"longest_edge": longest_edge} if longest_edge is not None else None
|
|
ctx = build_model_context(
|
|
model_name=model,
|
|
tokenizer_name=model,
|
|
trust_remote_code=True,
|
|
mm_processor_kwargs=None,
|
|
)
|
|
|
|
dummy_data = dummy_data_for_idefics3(
|
|
ctx=ctx,
|
|
seq_len=8192, # Should be bigger than num_imgs * toks_per_img
|
|
mm_counts={"image": num_imgs},
|
|
size=size)
|
|
sequence_data = dummy_data.seq_data
|
|
# Ensure we have the right number of placeholders per size
|
|
image_token_id = ctx.get_hf_config().image_token_id
|
|
img_tok_count = sequence_data.get_token_ids().count(image_token_id)
|
|
assert img_tok_count == toks_per_img * num_imgs
|
|
|
|
|
|
@pytest.mark.parametrize("model", models)
|
|
@pytest.mark.parametrize("longest_edge,expected_toks_per_img,num_imgs", [
|
|
(336, 169 * (1**2 + 1), 1),
|
|
(336, 169 * (1**2 + 1), 2),
|
|
(400, 169 * (2**2 + 1), 1),
|
|
(400, 169 * (2**2 + 1), 2),
|
|
])
|
|
def test_input_processor_override(input_processor_for_idefics3,
|
|
image_assets: _ImageAssets, model: str,
|
|
longest_edge: int,
|
|
expected_toks_per_img: int, num_imgs: int):
|
|
"""Ensure input_processor_for_idefics3 handles num_crops properly."""
|
|
# Same as the previous test - don't initialize mm_processor_kwargs
|
|
# in this test and assume that the kwargs will be correctly expanded by
|
|
# the partial when calling the custom input processor.
|
|
size = {"longest_edge": longest_edge} if longest_edge is not None else None
|
|
ctx = build_model_context(
|
|
model_name=model,
|
|
tokenizer_name=model,
|
|
trust_remote_code=True,
|
|
mm_processor_kwargs=None,
|
|
)
|
|
|
|
# Build the image str / prompt based on the number of images we pass
|
|
tokenizer = AutoTokenizer.from_pretrained(model)
|
|
placeholders = "<image>" if num_imgs == 1 else "\n".join(
|
|
f"Image-{i}: <image>\n" for i in range(1, num_imgs + 1))
|
|
prompt = f"<|begin_of_text|>User:{placeholders}\n<end_of_utterance>\nAssistant:" # noqa: E501
|
|
images = [image_assets[0].pil_image.resize((336 * 4, 336 * 4))] * num_imgs
|
|
|
|
inputs = token_inputs(prompt_token_ids=tokenizer.encode(prompt),
|
|
prompt=prompt,
|
|
multi_modal_data={"image": images})
|
|
|
|
processed_inputs = input_processor_for_idefics3(ctx, inputs, size=size)
|
|
|
|
# Ensure we have the right number of placeholders per num_crops size
|
|
image_token_id = ctx.get_hf_config().image_token_id
|
|
img_tok_count = processed_inputs["prompt_token_ids"].count(image_token_id)
|
|
assert img_tok_count == expected_toks_per_img * num_imgs
|