Russell Bryant e489ad7a21
[Misc] Add SPDX-License-Identifier headers to python source files (#12628)
- **Add SPDX license headers to python source files**
- **Check for SPDX headers using pre-commit**

commit 9d7ef44c3cfb72ca4c32e1c677d99259d10d4745
Author: Russell Bryant <rbryant@redhat.com>
Date:   Fri Jan 31 14:18:24 2025 -0500

    Add SPDX license headers to python source files
    
This commit adds SPDX license headers to python source files as
recommended to
the project by the Linux Foundation. These headers provide a concise way
that is
both human and machine readable for communicating license information
for each
source file. It helps avoid any ambiguity about the license of the code
and can
    also be easily used by tools to help manage license compliance.
    
The Linux Foundation runs license scans against the codebase to help
ensure
    we are in compliance with the licenses of the code we use, including
dependencies. Having these headers in place helps that tool do its job.
    
    More information can be found on the SPDX site:
    
    - https://spdx.dev/learn/handling-license-info/
    
    Signed-off-by: Russell Bryant <rbryant@redhat.com>

commit 5a1cf1cb3b80759131c73f6a9dddebccac039dea
Author: Russell Bryant <rbryant@redhat.com>
Date:   Fri Jan 31 14:36:32 2025 -0500

    Check for SPDX headers using pre-commit
    
    Signed-off-by: Russell Bryant <rbryant@redhat.com>

---------

Signed-off-by: Russell Bryant <rbryant@redhat.com>
2025-02-02 11:58:18 -08:00

208 lines
7.2 KiB
Python

# SPDX-License-Identifier: Apache-2.0
"""Tests for InternVL's multimodal preprocessing kwargs."""
from typing import Callable, Optional
import pytest
from transformers import AutoTokenizer
from vllm.inputs import InputContext, token_inputs
from vllm.multimodal import MultiModalRegistry
from ....conftest import _ImageAssets
from ...utils import build_model_context
models = ["OpenGVLab/InternVL2-2B"]
# Wrap lazy imports to avoid initializing CUDA during test collection
@pytest.fixture()
def input_processor_for_internvl():
from vllm.model_executor.models.internvl import InternVLInputPipeline
pipeline = InternVLInputPipeline('<img>', '</img>', '<IMG_CONTEXT>')
return pipeline.input_processor
@pytest.fixture()
def dummy_data_for_internvl():
from vllm.model_executor.models.internvl import InternVLInputPipeline
pipeline = InternVLInputPipeline('<img>', '</img>', '<IMG_CONTEXT>')
return pipeline.dummy_data
@pytest.fixture()
def get_max_internvl_image_tokens():
from vllm.model_executor.models.internvl import (
get_max_internvl_image_tokens)
return get_max_internvl_image_tokens
@pytest.mark.parametrize("model", models)
@pytest.mark.parametrize("max_dynamic_patch", [1, 4])
@pytest.mark.parametrize("dynamic_image_size", [True, False, None])
def test_input_mapper_override(
model: str,
image_assets: _ImageAssets,
max_dynamic_patch: int,
dynamic_image_size: Optional[bool],
):
mm_processor_kwargs = {
"max_dynamic_patch": max_dynamic_patch,
}
if dynamic_image_size is not None:
mm_processor_kwargs["dynamic_image_size"] = dynamic_image_size
expected_num_patches = max_dynamic_patch + 1 if max_dynamic_patch > 1 else 1
if dynamic_image_size is False:
expected_num_patches = 1
ctx = build_model_context(
model_name=model,
tokenizer_name=model,
trust_remote_code=True,
mm_processor_kwargs=mm_processor_kwargs,
)
mm_registry = MultiModalRegistry()
mm_registry.init_mm_limits_per_prompt(ctx.model_config)
image = image_assets[0].pil_image.resize((448 * 2, 448 * 2))
vllm_result = mm_registry.map_input(
ctx.model_config,
{"image": image},
)
assert vllm_result["pixel_values"].size(1) == expected_num_patches
@pytest.mark.parametrize("model", models)
@pytest.mark.parametrize("max_dynamic_patch", [1, 4, None])
@pytest.mark.parametrize("dynamic_image_size", [True, False, None])
def test_max_tokens_override(
get_max_internvl_image_tokens: Callable,
model: str,
max_dynamic_patch: Optional[int],
dynamic_image_size: Optional[bool],
):
"""Ensure get_max_internvl_image_tokens handles mm_processor_kwargs."""
ctx = build_model_context(
model_name=model,
tokenizer_name=model,
trust_remote_code=True,
mm_processor_kwargs=None,
)
if max_dynamic_patch is None:
max_dynamic_patch = ctx.get_hf_config().max_dynamic_patch
expected_num_patches = max_dynamic_patch + 1 if max_dynamic_patch > 1 else 1
if dynamic_image_size is False:
expected_num_patches = 1
expected_max_tokens = 256 * expected_num_patches
actual_max_tokens = get_max_internvl_image_tokens(
ctx=InputContext(ctx.model_config),
max_dynamic_patch=max_dynamic_patch,
dynamic_image_size=dynamic_image_size,
)
assert expected_max_tokens == actual_max_tokens
@pytest.mark.parametrize("model", models)
@pytest.mark.parametrize("num_imgs", [1, 2])
@pytest.mark.parametrize("max_dynamic_patch", [1, 4, None])
@pytest.mark.parametrize("dynamic_image_size", [True, False, None])
def test_dummy_data_override(
dummy_data_for_internvl: Callable,
model: str,
num_imgs: int,
max_dynamic_patch: Optional[int],
dynamic_image_size: Optional[bool],
):
"""Ensure dummy_data_for_internvl handles kwargs properly."""
# Same as the previous test - don't initialize mm_processor_kwargs
# in this test and assume that the kwargs will be correctly expanded by
# the partial when calling the dummy data func.
ctx = build_model_context(
model_name=model,
tokenizer_name=model,
trust_remote_code=True,
mm_processor_kwargs=None,
)
if max_dynamic_patch is None:
max_dynamic_patch = ctx.get_hf_config().max_dynamic_patch
expected_num_patches = max_dynamic_patch + 1 if max_dynamic_patch > 1 else 1
if dynamic_image_size is False:
expected_num_patches = 1
expected_max_tokens = 256 * expected_num_patches
dummy_data = dummy_data_for_internvl(
ctx=ctx,
seq_len=8192, # Should be bigger than num_imgs * toks_per_img
mm_counts={"image": num_imgs},
max_dynamic_patch=max_dynamic_patch,
dynamic_image_size=dynamic_image_size,
)
sequence_data = dummy_data.seq_data
tokenizer = AutoTokenizer.from_pretrained(model, trust_remote_code=True)
image_token_id = tokenizer.encode('<IMG_CONTEXT>',
add_special_tokens=False)[0]
# Ensure we have the right number of placeholders per size
img_tok_count = sequence_data.get_token_ids().count(image_token_id)
assert img_tok_count == expected_max_tokens * num_imgs
@pytest.mark.parametrize("model", models)
@pytest.mark.parametrize("max_dynamic_patch", [1, 4])
@pytest.mark.parametrize("dynamic_image_size", [True, False, None])
@pytest.mark.parametrize("num_imgs", [1, 2])
def test_input_processor_override(
input_processor_for_internvl: Callable,
image_assets: _ImageAssets,
model: str,
num_imgs: int,
max_dynamic_patch: int,
dynamic_image_size: Optional[bool],
):
"""Ensure input_processor_for_internvl handles kwargs properly."""
# Same as the previous test - don't initialize mm_processor_kwargs
# in this test and assume that the kwargs will be correctly expanded by
# the partial when calling the custom input processor.
expected_num_patches = max_dynamic_patch + 1 if max_dynamic_patch > 1 else 1
if dynamic_image_size is False:
expected_num_patches = 1
ctx = build_model_context(
model_name=model,
tokenizer_name=model,
trust_remote_code=True,
mm_processor_kwargs=None,
)
expected_toks_per_img = 256 * expected_num_patches
# Build the image str / prompt based on the number of images we pass
tokenizer = AutoTokenizer.from_pretrained(model, trust_remote_code=True)
placeholders = "<image>" if num_imgs == 1 else "\n".join(
f"Image-{i}: <image>\n" for i in range(1, num_imgs + 1))
prompt = placeholders
images = [image_assets[0].pil_image.resize((448 * 2, 448 * 2))] * num_imgs
inputs = token_inputs(prompt_token_ids=tokenizer.encode(prompt),
prompt=prompt,
multi_modal_data={"image": images})
processed_inputs = input_processor_for_internvl(
ctx,
inputs,
max_dynamic_patch=max_dynamic_patch,
dynamic_image_size=dynamic_image_size,
)
# Ensure we have the right number of placeholders per num_crops size
image_token_id = tokenizer.encode('<IMG_CONTEXT>',
add_special_tokens=False)[0]
img_tok_count = processed_inputs["prompt_token_ids"].count(image_token_id)
assert img_tok_count == expected_toks_per_img * num_imgs