mirror of
https://git.datalinker.icu/vllm-project/vllm.git
synced 2025-12-10 17:35:48 +08:00
- **Add SPDX license headers to python source files**
- **Check for SPDX headers using pre-commit**
commit 9d7ef44c3cfb72ca4c32e1c677d99259d10d4745
Author: Russell Bryant <rbryant@redhat.com>
Date: Fri Jan 31 14:18:24 2025 -0500
Add SPDX license headers to python source files
This commit adds SPDX license headers to python source files as
recommended to
the project by the Linux Foundation. These headers provide a concise way
that is
both human and machine readable for communicating license information
for each
source file. It helps avoid any ambiguity about the license of the code
and can
also be easily used by tools to help manage license compliance.
The Linux Foundation runs license scans against the codebase to help
ensure
we are in compliance with the licenses of the code we use, including
dependencies. Having these headers in place helps that tool do its job.
More information can be found on the SPDX site:
- https://spdx.dev/learn/handling-license-info/
Signed-off-by: Russell Bryant <rbryant@redhat.com>
commit 5a1cf1cb3b80759131c73f6a9dddebccac039dea
Author: Russell Bryant <rbryant@redhat.com>
Date: Fri Jan 31 14:36:32 2025 -0500
Check for SPDX headers using pre-commit
Signed-off-by: Russell Bryant <rbryant@redhat.com>
---------
Signed-off-by: Russell Bryant <rbryant@redhat.com>
196 lines
6.3 KiB
Python
196 lines
6.3 KiB
Python
# SPDX-License-Identifier: Apache-2.0
|
|
|
|
import itertools
|
|
from functools import partial
|
|
|
|
import pytest
|
|
from PIL import Image
|
|
from pqdm.threads import pqdm
|
|
|
|
from vllm.multimodal import MULTIMODAL_REGISTRY
|
|
from vllm.multimodal.parse import ImageSize
|
|
from vllm.multimodal.processing import BaseMultiModalProcessor
|
|
from vllm.multimodal.utils import cached_get_tokenizer
|
|
|
|
from ...utils import build_model_context
|
|
|
|
|
|
def _validate_image_max_tokens_one(
|
|
processor: BaseMultiModalProcessor,
|
|
max_tokens: int,
|
|
failed_size_excs: list[tuple[ImageSize, Exception]],
|
|
image_size: ImageSize,
|
|
) -> None:
|
|
info = processor.info
|
|
feature_size = info.get_num_image_tokens(image_width=image_size.width,
|
|
image_height=image_size.height)
|
|
|
|
try:
|
|
assert feature_size <= max_tokens, f"{feature_size} <= {max_tokens}"
|
|
except Exception as exc:
|
|
failed_size_excs.append((image_size, exc))
|
|
|
|
|
|
@pytest.mark.skip("This test takes around 5 minutes to run. "
|
|
"Comment this out to run it manually.")
|
|
@pytest.mark.parametrize("model_id", ["llava-hf/llava-v1.6-mistral-7b-hf"])
|
|
def test_processor_max_tokens(model_id):
|
|
ctx = build_model_context(
|
|
model_name=model_id,
|
|
tokenizer_name=model_id,
|
|
mm_processor_kwargs=None,
|
|
limit_mm_per_prompt={"image": 1},
|
|
)
|
|
processor = MULTIMODAL_REGISTRY.create_processor(
|
|
ctx.model_config,
|
|
tokenizer=cached_get_tokenizer(ctx.model_config.tokenizer),
|
|
)
|
|
info = processor.info
|
|
|
|
seen_aspect_ratios = set[float]()
|
|
image_sizes = list[ImageSize]()
|
|
|
|
# The aspect ratio of the grid layout is between 1 and 2
|
|
# NOTE: Assumes that feature size calculation is the same if we
|
|
# swap the width and height of the image
|
|
for w, h in itertools.product(range(32, 4096), repeat=2):
|
|
aspect_ratio = w / h
|
|
if 1 <= aspect_ratio <= 2 and aspect_ratio not in seen_aspect_ratios:
|
|
image_sizes.append(ImageSize(w, h))
|
|
seen_aspect_ratios.add(aspect_ratio)
|
|
|
|
failed_size_excs = list[tuple[ImageSize, Exception]]()
|
|
|
|
validate_one = partial(
|
|
_validate_image_max_tokens_one,
|
|
processor,
|
|
info.get_max_image_tokens(), # type: ignore
|
|
failed_size_excs,
|
|
)
|
|
pqdm(image_sizes, validate_one, n_jobs=8, desc="Validating image sizes")
|
|
|
|
if failed_size_excs:
|
|
msg = "Found failing image sizes:" \
|
|
+ "\n========\n".join(f"[{size}]\n{exc}"
|
|
for size, exc in failed_size_excs)
|
|
raise AssertionError(msg)
|
|
|
|
|
|
def _validate_image_prompt_replacements_one(
|
|
processor: BaseMultiModalProcessor,
|
|
num_imgs: int,
|
|
failed_size_excs: list[tuple[ImageSize, Exception]],
|
|
image_size: ImageSize,
|
|
) -> None:
|
|
prompt = "<image>" * num_imgs
|
|
image = Image.new("RGB", size=image_size)
|
|
mm_data = {"image": [image] * num_imgs}
|
|
|
|
try:
|
|
# The processor will throw an error if there is a mismatch
|
|
# in the prompt replacements
|
|
processed_inputs = processor.apply(prompt, mm_data, {})
|
|
|
|
image_placeholders = processed_inputs["mm_placeholders"]["image"]
|
|
assert len(image_placeholders) == num_imgs
|
|
|
|
first_placeholder = image_placeholders[0]
|
|
|
|
# NOTE: There is a BOS token
|
|
assert first_placeholder["offset"] == 1
|
|
assert first_placeholder["length"] == (
|
|
len(processed_inputs["prompt_token_ids"]) - 1) // num_imgs
|
|
|
|
except Exception as exc:
|
|
failed_size_excs.append((image_size, exc))
|
|
|
|
|
|
def _test_image_prompt_replacements(
|
|
processor,
|
|
*,
|
|
num_imgs: int,
|
|
image_sizes: list[ImageSize],
|
|
) -> None:
|
|
"""
|
|
Ensure LlavaNextMultiModalProcessor
|
|
handles prompt replacement properly for input images.
|
|
"""
|
|
failed_size_excs = list[tuple[ImageSize, Exception]]()
|
|
|
|
validate_one = partial(
|
|
_validate_image_prompt_replacements_one,
|
|
processor,
|
|
num_imgs,
|
|
failed_size_excs,
|
|
)
|
|
pqdm(image_sizes, validate_one, n_jobs=8, desc="Validating image sizes")
|
|
|
|
if failed_size_excs:
|
|
msg = "Found failing image sizes:" \
|
|
+ "\n========\n".join(f"[{size}]\n{exc}"
|
|
for size, exc in failed_size_excs)
|
|
raise AssertionError(msg)
|
|
|
|
|
|
@pytest.mark.parametrize("model_id", ["llava-hf/llava-v1.6-mistral-7b-hf"])
|
|
@pytest.mark.parametrize("num_imgs", [1, 2])
|
|
def test_processor_prompt_replacements_regression(model_id, num_imgs):
|
|
ctx = build_model_context(
|
|
model_name=model_id,
|
|
tokenizer_name=model_id,
|
|
mm_processor_kwargs=None,
|
|
limit_mm_per_prompt={"image": num_imgs},
|
|
)
|
|
processor = MULTIMODAL_REGISTRY.create_processor(
|
|
ctx.model_config,
|
|
tokenizer=cached_get_tokenizer(ctx.model_config.tokenizer),
|
|
)
|
|
|
|
image_ratios = [(171, 152), (184, 161), (198, 176), (333, 296), (369, 328),
|
|
(488, 183), (2560, 1669)]
|
|
image_sizes = [
|
|
size for w, h in image_ratios
|
|
for size in [ImageSize(w, h), ImageSize(h, w)]
|
|
]
|
|
|
|
_test_image_prompt_replacements(
|
|
processor,
|
|
num_imgs=num_imgs,
|
|
image_sizes=image_sizes,
|
|
)
|
|
|
|
|
|
@pytest.mark.skip("This test takes around 2 hours to run. "
|
|
"Comment this out to run it manually.")
|
|
@pytest.mark.parametrize("model_id", ["llava-hf/llava-v1.6-mistral-7b-hf"])
|
|
@pytest.mark.parametrize("num_imgs", [1])
|
|
def test_processor_prompt_replacements_all(model_id, num_imgs):
|
|
ctx = build_model_context(
|
|
model_name=model_id,
|
|
tokenizer_name=model_id,
|
|
mm_processor_kwargs=None,
|
|
limit_mm_per_prompt={"image": num_imgs},
|
|
)
|
|
processor = MULTIMODAL_REGISTRY.create_processor(
|
|
ctx.model_config,
|
|
tokenizer=cached_get_tokenizer(ctx.model_config.tokenizer),
|
|
)
|
|
|
|
seen_aspect_ratios = set[float]()
|
|
image_sizes = list[ImageSize]()
|
|
|
|
# The aspect ratio of the grid layout is between 1 and 2
|
|
# NOTE: Assumes that feature size calculation is the same if we
|
|
# swap the width and height of the image
|
|
for w, h in itertools.product(range(64, 1024), repeat=2):
|
|
aspect_ratio = w / h
|
|
if 1 <= aspect_ratio <= 2 and aspect_ratio not in seen_aspect_ratios:
|
|
image_sizes.append(ImageSize(w, h))
|
|
seen_aspect_ratios.add(aspect_ratio)
|
|
|
|
_test_image_prompt_replacements(
|
|
processor,
|
|
num_imgs=num_imgs,
|
|
image_sizes=image_sizes,
|
|
)
|