vllm/tests/models/multimodal/processing/test_llava_next.py
Russell Bryant e489ad7a21
[Misc] Add SPDX-License-Identifier headers to python source files (#12628)
- **Add SPDX license headers to python source files**
- **Check for SPDX headers using pre-commit**

commit 9d7ef44c3cfb72ca4c32e1c677d99259d10d4745
Author: Russell Bryant <rbryant@redhat.com>
Date:   Fri Jan 31 14:18:24 2025 -0500

    Add SPDX license headers to python source files
    
This commit adds SPDX license headers to python source files as
recommended to
the project by the Linux Foundation. These headers provide a concise way
that is
both human and machine readable for communicating license information
for each
source file. It helps avoid any ambiguity about the license of the code
and can
    also be easily used by tools to help manage license compliance.
    
The Linux Foundation runs license scans against the codebase to help
ensure
    we are in compliance with the licenses of the code we use, including
dependencies. Having these headers in place helps that tool do its job.
    
    More information can be found on the SPDX site:
    
    - https://spdx.dev/learn/handling-license-info/
    
    Signed-off-by: Russell Bryant <rbryant@redhat.com>

commit 5a1cf1cb3b80759131c73f6a9dddebccac039dea
Author: Russell Bryant <rbryant@redhat.com>
Date:   Fri Jan 31 14:36:32 2025 -0500

    Check for SPDX headers using pre-commit
    
    Signed-off-by: Russell Bryant <rbryant@redhat.com>

---------

Signed-off-by: Russell Bryant <rbryant@redhat.com>
2025-02-02 11:58:18 -08:00

196 lines
6.3 KiB
Python

# SPDX-License-Identifier: Apache-2.0
import itertools
from functools import partial
import pytest
from PIL import Image
from pqdm.threads import pqdm
from vllm.multimodal import MULTIMODAL_REGISTRY
from vllm.multimodal.parse import ImageSize
from vllm.multimodal.processing import BaseMultiModalProcessor
from vllm.multimodal.utils import cached_get_tokenizer
from ...utils import build_model_context
def _validate_image_max_tokens_one(
processor: BaseMultiModalProcessor,
max_tokens: int,
failed_size_excs: list[tuple[ImageSize, Exception]],
image_size: ImageSize,
) -> None:
info = processor.info
feature_size = info.get_num_image_tokens(image_width=image_size.width,
image_height=image_size.height)
try:
assert feature_size <= max_tokens, f"{feature_size} <= {max_tokens}"
except Exception as exc:
failed_size_excs.append((image_size, exc))
@pytest.mark.skip("This test takes around 5 minutes to run. "
"Comment this out to run it manually.")
@pytest.mark.parametrize("model_id", ["llava-hf/llava-v1.6-mistral-7b-hf"])
def test_processor_max_tokens(model_id):
ctx = build_model_context(
model_name=model_id,
tokenizer_name=model_id,
mm_processor_kwargs=None,
limit_mm_per_prompt={"image": 1},
)
processor = MULTIMODAL_REGISTRY.create_processor(
ctx.model_config,
tokenizer=cached_get_tokenizer(ctx.model_config.tokenizer),
)
info = processor.info
seen_aspect_ratios = set[float]()
image_sizes = list[ImageSize]()
# The aspect ratio of the grid layout is between 1 and 2
# NOTE: Assumes that feature size calculation is the same if we
# swap the width and height of the image
for w, h in itertools.product(range(32, 4096), repeat=2):
aspect_ratio = w / h
if 1 <= aspect_ratio <= 2 and aspect_ratio not in seen_aspect_ratios:
image_sizes.append(ImageSize(w, h))
seen_aspect_ratios.add(aspect_ratio)
failed_size_excs = list[tuple[ImageSize, Exception]]()
validate_one = partial(
_validate_image_max_tokens_one,
processor,
info.get_max_image_tokens(), # type: ignore
failed_size_excs,
)
pqdm(image_sizes, validate_one, n_jobs=8, desc="Validating image sizes")
if failed_size_excs:
msg = "Found failing image sizes:" \
+ "\n========\n".join(f"[{size}]\n{exc}"
for size, exc in failed_size_excs)
raise AssertionError(msg)
def _validate_image_prompt_replacements_one(
processor: BaseMultiModalProcessor,
num_imgs: int,
failed_size_excs: list[tuple[ImageSize, Exception]],
image_size: ImageSize,
) -> None:
prompt = "<image>" * num_imgs
image = Image.new("RGB", size=image_size)
mm_data = {"image": [image] * num_imgs}
try:
# The processor will throw an error if there is a mismatch
# in the prompt replacements
processed_inputs = processor.apply(prompt, mm_data, {})
image_placeholders = processed_inputs["mm_placeholders"]["image"]
assert len(image_placeholders) == num_imgs
first_placeholder = image_placeholders[0]
# NOTE: There is a BOS token
assert first_placeholder["offset"] == 1
assert first_placeholder["length"] == (
len(processed_inputs["prompt_token_ids"]) - 1) // num_imgs
except Exception as exc:
failed_size_excs.append((image_size, exc))
def _test_image_prompt_replacements(
processor,
*,
num_imgs: int,
image_sizes: list[ImageSize],
) -> None:
"""
Ensure LlavaNextMultiModalProcessor
handles prompt replacement properly for input images.
"""
failed_size_excs = list[tuple[ImageSize, Exception]]()
validate_one = partial(
_validate_image_prompt_replacements_one,
processor,
num_imgs,
failed_size_excs,
)
pqdm(image_sizes, validate_one, n_jobs=8, desc="Validating image sizes")
if failed_size_excs:
msg = "Found failing image sizes:" \
+ "\n========\n".join(f"[{size}]\n{exc}"
for size, exc in failed_size_excs)
raise AssertionError(msg)
@pytest.mark.parametrize("model_id", ["llava-hf/llava-v1.6-mistral-7b-hf"])
@pytest.mark.parametrize("num_imgs", [1, 2])
def test_processor_prompt_replacements_regression(model_id, num_imgs):
ctx = build_model_context(
model_name=model_id,
tokenizer_name=model_id,
mm_processor_kwargs=None,
limit_mm_per_prompt={"image": num_imgs},
)
processor = MULTIMODAL_REGISTRY.create_processor(
ctx.model_config,
tokenizer=cached_get_tokenizer(ctx.model_config.tokenizer),
)
image_ratios = [(171, 152), (184, 161), (198, 176), (333, 296), (369, 328),
(488, 183), (2560, 1669)]
image_sizes = [
size for w, h in image_ratios
for size in [ImageSize(w, h), ImageSize(h, w)]
]
_test_image_prompt_replacements(
processor,
num_imgs=num_imgs,
image_sizes=image_sizes,
)
@pytest.mark.skip("This test takes around 2 hours to run. "
"Comment this out to run it manually.")
@pytest.mark.parametrize("model_id", ["llava-hf/llava-v1.6-mistral-7b-hf"])
@pytest.mark.parametrize("num_imgs", [1])
def test_processor_prompt_replacements_all(model_id, num_imgs):
ctx = build_model_context(
model_name=model_id,
tokenizer_name=model_id,
mm_processor_kwargs=None,
limit_mm_per_prompt={"image": num_imgs},
)
processor = MULTIMODAL_REGISTRY.create_processor(
ctx.model_config,
tokenizer=cached_get_tokenizer(ctx.model_config.tokenizer),
)
seen_aspect_ratios = set[float]()
image_sizes = list[ImageSize]()
# The aspect ratio of the grid layout is between 1 and 2
# NOTE: Assumes that feature size calculation is the same if we
# swap the width and height of the image
for w, h in itertools.product(range(64, 1024), repeat=2):
aspect_ratio = w / h
if 1 <= aspect_ratio <= 2 and aspect_ratio not in seen_aspect_ratios:
image_sizes.append(ImageSize(w, h))
seen_aspect_ratios.add(aspect_ratio)
_test_image_prompt_replacements(
processor,
num_imgs=num_imgs,
image_sizes=image_sizes,
)