mirror of
https://git.datalinker.icu/vllm-project/vllm.git
synced 2025-12-10 11:17:07 +08:00
- **Add SPDX license headers to python source files**
- **Check for SPDX headers using pre-commit**
commit 9d7ef44c3cfb72ca4c32e1c677d99259d10d4745
Author: Russell Bryant <rbryant@redhat.com>
Date: Fri Jan 31 14:18:24 2025 -0500
Add SPDX license headers to python source files
This commit adds SPDX license headers to python source files as
recommended to
the project by the Linux Foundation. These headers provide a concise way
that is
both human and machine readable for communicating license information
for each
source file. It helps avoid any ambiguity about the license of the code
and can
also be easily used by tools to help manage license compliance.
The Linux Foundation runs license scans against the codebase to help
ensure
we are in compliance with the licenses of the code we use, including
dependencies. Having these headers in place helps that tool do its job.
More information can be found on the SPDX site:
- https://spdx.dev/learn/handling-license-info/
Signed-off-by: Russell Bryant <rbryant@redhat.com>
commit 5a1cf1cb3b80759131c73f6a9dddebccac039dea
Author: Russell Bryant <rbryant@redhat.com>
Date: Fri Jan 31 14:36:32 2025 -0500
Check for SPDX headers using pre-commit
Signed-off-by: Russell Bryant <rbryant@redhat.com>
---------
Signed-off-by: Russell Bryant <rbryant@redhat.com>
459 lines
15 KiB
Python
459 lines
15 KiB
Python
# SPDX-License-Identifier: Apache-2.0
|
|
|
|
import random
|
|
from typing import Optional
|
|
|
|
import pytest
|
|
import torch
|
|
import torch.nn.functional as F
|
|
|
|
|
|
class BlockDiagonalCausalFromBottomRightMask:
|
|
|
|
@staticmethod
|
|
def _from_seqlens(query_lens, seq_lens, block_size=None):
|
|
from torch import logical_and, logical_or
|
|
|
|
contexted = block_size is None
|
|
context_lens = torch.tensor(seq_lens) - torch.tensor(query_lens)
|
|
n_queries = sum(query_lens)
|
|
num_seqs = len(query_lens)
|
|
if contexted:
|
|
key_lens_blockaligned = seq_lens
|
|
else:
|
|
n_blocks_per_seq = (context_lens + block_size - 1) // block_size
|
|
offset_per_seq = n_blocks_per_seq * block_size
|
|
key_lens_blockaligned = offset_per_seq[:num_seqs].tolist()
|
|
n_keys = sum(key_lens_blockaligned)
|
|
|
|
a = (torch.arange(n_queries).reshape(n_queries,
|
|
1).expand(n_queries, n_keys))
|
|
b = torch.arange(n_keys).reshape(1, n_keys).expand(n_queries, n_keys)
|
|
q_cumsum = torch.tensor([0] + query_lens).cumsum(dim=0)
|
|
k_cumsum = torch.tensor([0] + key_lens_blockaligned).cumsum(dim=0)
|
|
|
|
prior_mask = torch.zeros(n_queries, n_keys)
|
|
new_masks: list[torch.Tensor] = []
|
|
for seq_id in range(num_seqs):
|
|
ri = q_cumsum[seq_id]
|
|
ci = k_cumsum[seq_id]
|
|
nr = query_lens[seq_id]
|
|
|
|
if contexted:
|
|
nc = seq_lens[seq_id]
|
|
a_offset = ci + nc - ri - nr
|
|
new_mask = (a + a_offset) >= b
|
|
else:
|
|
nc = context_lens[seq_id]
|
|
a_offset = ci + nc - 1
|
|
new_mask = a_offset >= b
|
|
|
|
left_mask = b >= ci
|
|
top_mask = a >= ri
|
|
bottom_mask = a < (ri + nr)
|
|
|
|
new_mask = logical_and(
|
|
logical_and(logical_and(new_mask, left_mask), top_mask),
|
|
bottom_mask,
|
|
)
|
|
prior_mask = logical_or(prior_mask, new_mask)
|
|
new_masks = new_masks + [new_mask]
|
|
return prior_mask
|
|
|
|
@staticmethod
|
|
def from_seqlens(query_lens, seq_lens, block_size=None):
|
|
contexted = block_size is None
|
|
if contexted:
|
|
prior_mask = BlockDiagonalCausalFromBottomRightMask._from_seqlens(
|
|
query_lens, seq_lens)
|
|
active_mask = None
|
|
else:
|
|
prior_mask = BlockDiagonalCausalFromBottomRightMask._from_seqlens(
|
|
query_lens, seq_lens, block_size)
|
|
active_mask = BlockDiagonalCausalFromBottomRightMask._from_seqlens(
|
|
query_lens, query_lens)
|
|
return prior_mask, active_mask
|
|
|
|
|
|
def ref_softmax(x: torch.Tensor,
|
|
dim: int,
|
|
mixed_precision=False,
|
|
return_max_reduce=False):
|
|
max_value = torch.amax(x, dim=dim, keepdims=True)
|
|
exp = torch.exp(x - max_value)
|
|
if mixed_precision:
|
|
sum_value = torch.sum(exp.astype(torch.float32),
|
|
dim=dim,
|
|
keepdims=True).astype(x.dtype)
|
|
else:
|
|
sum_value = torch.sum(exp, dim=dim, keepdims=True)
|
|
if return_max_reduce:
|
|
return exp / sum_value, max_value, torch.reciprocal(sum_value)
|
|
return exp / sum_value
|
|
|
|
|
|
def ref_masked_attention(
|
|
query: torch.Tensor,
|
|
key: torch.Tensor,
|
|
value: torch.Tensor,
|
|
scale: float,
|
|
attn_mask: Optional[torch.Tensor] = None,
|
|
return_max_reduce: Optional[bool] = False,
|
|
) -> torch.Tensor:
|
|
scaled_qk = scale * torch.einsum("qhd,khd->hqk", query, key).float()
|
|
if attn_mask is not None:
|
|
masked_score = scaled_qk + attn_mask.float()
|
|
if return_max_reduce:
|
|
norm_score, cached_max, cached_sum_reciprocal = ref_softmax(
|
|
masked_score, dim=-1, return_max_reduce=True)
|
|
else:
|
|
norm_score = ref_softmax(masked_score, dim=-1)
|
|
out = torch.einsum("hqk,khd->qhd", norm_score, value)
|
|
if return_max_reduce:
|
|
return (
|
|
out,
|
|
cached_max,
|
|
cached_sum_reciprocal,
|
|
norm_score,
|
|
masked_score,
|
|
scaled_qk,
|
|
)
|
|
else:
|
|
return out
|
|
|
|
|
|
def ref_context_attention(
|
|
query,
|
|
key,
|
|
value,
|
|
query_lens,
|
|
seq_lens,
|
|
head_size,
|
|
num_kv_heads,
|
|
num_heads,
|
|
num_queries_per_kv,
|
|
return_max_reduce=False,
|
|
):
|
|
scale = float(1.0 / (head_size**0.5))
|
|
if num_queries_per_kv > 1:
|
|
# Handle MQA and GQA
|
|
key = torch.repeat_interleave(key, num_queries_per_kv, dim=1)
|
|
value = torch.repeat_interleave(value, num_queries_per_kv, dim=1)
|
|
|
|
attn_mask, _ = BlockDiagonalCausalFromBottomRightMask.from_seqlens(
|
|
query_lens, seq_lens)
|
|
|
|
# convert binary mask to -inf values
|
|
attn_mask = torch.logical_not(attn_mask)
|
|
attn_mask = attn_mask.float() * -30000
|
|
|
|
output, cached_max, cached_sum_reciprocal, lse, masked_score, scaled_qk = (
|
|
ref_masked_attention(
|
|
query,
|
|
key,
|
|
value,
|
|
scale,
|
|
attn_mask,
|
|
return_max_reduce=return_max_reduce,
|
|
))
|
|
|
|
output = output.unsqueeze(1)
|
|
if return_max_reduce:
|
|
return (
|
|
output,
|
|
cached_max,
|
|
cached_sum_reciprocal,
|
|
lse,
|
|
masked_score,
|
|
scaled_qk,
|
|
)
|
|
else:
|
|
return output
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"num_heads,num_queries_per_kv,head_size,mixed_precision",
|
|
[
|
|
(4, 2, 8, False),
|
|
(4, 2, 8, True),
|
|
(32, 8, 64, True),
|
|
],
|
|
)
|
|
@torch.inference_mode()
|
|
def test_contexted_kv_attention(
|
|
num_heads: int,
|
|
num_queries_per_kv: int,
|
|
head_size: int,
|
|
mixed_precision: bool,
|
|
) -> None:
|
|
import os
|
|
|
|
import torch_xla.core.xla_model as xm
|
|
|
|
from vllm.attention.ops.nki_flash_attn import flash_attn_varlen_nkifunc
|
|
|
|
device = xm.xla_device()
|
|
|
|
os.environ["NEURON_CC_FLAGS"] = (
|
|
" --model-type=transformer -O1 "
|
|
" --internal-hlo2tensorizer-options='--verify-hlo' ")
|
|
|
|
random.seed(0)
|
|
torch.manual_seed(0)
|
|
torch.set_printoptions(sci_mode=False)
|
|
|
|
min_ctx_len = 2
|
|
max_ctx_len = 64
|
|
min_query_len = 2
|
|
max_query_len = 64
|
|
prefill_batch_size = 2
|
|
decode_batch_size = 6
|
|
batch_size = prefill_batch_size + decode_batch_size
|
|
block_size = 32
|
|
max_model_len = (max_query_len + max_ctx_len) * 4
|
|
|
|
max_block_per_request = max_model_len // block_size
|
|
dtype = torch.float32
|
|
cache_size = (batch_size * max_block_per_request) + 2
|
|
ctx_lens = [
|
|
random.randint(min_ctx_len, max_ctx_len)
|
|
for _ in range(prefill_batch_size)
|
|
] + [
|
|
random.randint(min_ctx_len, max_ctx_len)
|
|
for _ in range(decode_batch_size)
|
|
]
|
|
query_lens = [
|
|
random.randint(min_query_len, max_query_len)
|
|
for _ in range(prefill_batch_size)
|
|
] + [1 for _ in range(decode_batch_size)]
|
|
seq_lens = [a + b for a, b in zip(query_lens, ctx_lens)]
|
|
num_kv_heads = num_heads // num_queries_per_kv
|
|
|
|
num_tokens = sum(query_lens)
|
|
query = torch.empty(num_tokens, num_heads, head_size, dtype=dtype)
|
|
query.uniform_(-1, 1)
|
|
torch.empty(num_tokens, num_heads, head_size, dtype=dtype)
|
|
|
|
kv = torch.empty(sum(seq_lens), 2, num_kv_heads, head_size, dtype=dtype)
|
|
kv.uniform_(-1, 1)
|
|
key, value = kv.unbind(dim=1)
|
|
|
|
k_cache = torch.zeros(cache_size,
|
|
block_size,
|
|
num_kv_heads,
|
|
head_size,
|
|
dtype=dtype)
|
|
v_cache = torch.zeros(cache_size,
|
|
block_size,
|
|
num_kv_heads,
|
|
head_size,
|
|
dtype=dtype)
|
|
k = torch.zeros(sum(query_lens), num_kv_heads, head_size, dtype=dtype)
|
|
v = torch.zeros(sum(query_lens), num_kv_heads, head_size, dtype=dtype)
|
|
values = torch.arange(0, cache_size, dtype=torch.long)
|
|
values = values[torch.randperm(cache_size)]
|
|
block_table = values[:batch_size * max_block_per_request].view(
|
|
batch_size, max_block_per_request)
|
|
torch.tensor(seq_lens, dtype=torch.long)
|
|
b_ctx_len = torch.tensor(ctx_lens, dtype=torch.long)
|
|
b_start_loc = torch.cumsum(torch.tensor([0] + query_lens[:-1],
|
|
dtype=torch.long),
|
|
dim=0)
|
|
# copy kv to cache
|
|
b_seq_start_loc = torch.cumsum(torch.tensor([0] + seq_lens[:-1],
|
|
dtype=torch.long),
|
|
dim=0)
|
|
for i in range(batch_size):
|
|
for j in range(query_lens[i]):
|
|
k[b_start_loc[i] + j].copy_(key[b_seq_start_loc[i] + b_ctx_len[i] +
|
|
j])
|
|
v[b_start_loc[i] + j].copy_(value[b_seq_start_loc[i] +
|
|
b_ctx_len[i] + j])
|
|
cur_ctx = 0
|
|
block_id = 0
|
|
while cur_ctx < b_ctx_len[i]:
|
|
start_loc = b_seq_start_loc[i] + cur_ctx
|
|
if cur_ctx + block_size > b_ctx_len[i]:
|
|
end_loc = b_seq_start_loc[i] + b_ctx_len[i]
|
|
else:
|
|
end_loc = start_loc + block_size
|
|
start_slot = block_table[i, block_id] * block_size
|
|
end_slot = start_slot + end_loc - start_loc
|
|
k_cache.view(-1, num_kv_heads,
|
|
head_size)[start_slot:end_slot].copy_(
|
|
key[start_loc:end_loc])
|
|
v_cache.view(-1, num_kv_heads,
|
|
head_size)[start_slot:end_slot].copy_(
|
|
value[start_loc:end_loc])
|
|
cur_ctx += block_size
|
|
block_id += 1
|
|
|
|
(
|
|
output_ref,
|
|
cached_max,
|
|
cached_sum_reciprocal,
|
|
lse,
|
|
masked_score,
|
|
scaled_qk,
|
|
) = ref_context_attention(
|
|
query,
|
|
key,
|
|
value,
|
|
query_lens,
|
|
seq_lens,
|
|
head_size,
|
|
num_kv_heads,
|
|
num_heads,
|
|
num_queries_per_kv,
|
|
return_max_reduce=True,
|
|
)
|
|
|
|
# build neuron program
|
|
return_debug_tensors = False
|
|
B_P_SIZE = 128
|
|
LARGE_TILE_SZ = 2048
|
|
max_num_queries = (
|
|
(sum(query_lens) + block_size - 1) // block_size) * block_size
|
|
|
|
def get_active_block_tables(block_tables, query_lens, seq_lens, block_size,
|
|
num_blocks):
|
|
context_lens = seq_lens - query_lens
|
|
blocks_per_seq = (context_lens + block_size - 1) // block_size
|
|
num_seqs = len(seq_lens)
|
|
active_blocks: list[int] = []
|
|
for seq_id in range(num_seqs):
|
|
active_blocks = (
|
|
active_blocks +
|
|
block_tables[seq_id, :blocks_per_seq[seq_id]].tolist())
|
|
return F.pad(
|
|
torch.tensor(active_blocks),
|
|
(0, num_blocks - len(active_blocks)),
|
|
"constant",
|
|
0,
|
|
)
|
|
|
|
def shift_bit_length(x):
|
|
return 1 << (x - 1).bit_length()
|
|
|
|
# calculate input shapes
|
|
max_num_queries_shifted = shift_bit_length(max_num_queries)
|
|
max_num_queries_factor = B_P_SIZE // max_num_queries_shifted
|
|
max_num_queries_padded = max_num_queries_shifted * max_num_queries_factor
|
|
assert (max_num_queries_padded == B_P_SIZE
|
|
), "invalid {max_num_queries_padded=}"
|
|
head_size_padded = B_P_SIZE
|
|
context_lens = torch.tensor(seq_lens) - torch.tensor(query_lens)
|
|
num_active_blocks_shifted = shift_bit_length(
|
|
((context_lens + block_size - 1) // block_size).sum().item())
|
|
num_active_blocks_factor = (LARGE_TILE_SZ // block_size //
|
|
num_active_blocks_shifted)
|
|
num_active_blocks = num_active_blocks_shifted * num_active_blocks_factor
|
|
assert (num_active_blocks *
|
|
block_size) == LARGE_TILE_SZ, "invalid {num_active_blocks=}"
|
|
context_kv_len = num_active_blocks * block_size
|
|
assert context_kv_len == LARGE_TILE_SZ, f"invalid {context_kv_len=}"
|
|
|
|
# pad QKV tensors
|
|
pad_dims = (
|
|
0,
|
|
head_size_padded - query.shape[2],
|
|
0,
|
|
0,
|
|
0,
|
|
max_num_queries_padded - query.shape[0],
|
|
)
|
|
query = F.pad(query, pad_dims, "constant", 0)
|
|
k = F.pad(k, pad_dims, "constant", 0)
|
|
v = F.pad(v, pad_dims, "constant", 0)
|
|
k_cache = F.pad(k_cache, (0, head_size_padded - head_size), "constant", 0)
|
|
v_cache = F.pad(v_cache, (0, head_size_padded - head_size), "constant", 0)
|
|
|
|
# permute QKV tensors
|
|
# query: (1, n_heads, d, seq_q)
|
|
# key: (1, n_kv_heads, d, seq_k)
|
|
# value: (1, n_kv_heads, seq_v, d)
|
|
query = query.unsqueeze(0).permute(0, 2, 3, 1).contiguous()
|
|
k = k.unsqueeze(0).permute(0, 2, 3, 1).contiguous()
|
|
v = v.unsqueeze(0).permute(0, 2, 1, 3).contiguous()
|
|
|
|
# transform block table
|
|
active_block_table = get_active_block_tables(
|
|
block_table,
|
|
torch.tensor(query_lens),
|
|
torch.tensor(seq_lens),
|
|
block_size,
|
|
num_active_blocks,
|
|
)
|
|
|
|
# Build attention masks
|
|
prior_mask, active_mask = (
|
|
BlockDiagonalCausalFromBottomRightMask.from_seqlens(
|
|
query_lens, seq_lens, block_size=block_size))
|
|
attn_mask = torch.concat(
|
|
[
|
|
F.pad(
|
|
prior_mask,
|
|
(
|
|
0,
|
|
context_kv_len - prior_mask.shape[1],
|
|
0,
|
|
B_P_SIZE - prior_mask.shape[0],
|
|
),
|
|
"constant",
|
|
0,
|
|
).bool(),
|
|
F.pad(
|
|
active_mask,
|
|
(
|
|
0,
|
|
B_P_SIZE - active_mask.shape[1],
|
|
0,
|
|
B_P_SIZE - active_mask.shape[0],
|
|
),
|
|
"constant",
|
|
0,
|
|
).bool(),
|
|
],
|
|
dim=1,
|
|
)
|
|
|
|
input_args = (
|
|
query.to(device=device),
|
|
k.to(device=device),
|
|
v.to(device=device),
|
|
k_cache.to(device=device),
|
|
v_cache.to(device=device),
|
|
active_block_table.to(torch.int32).to(device=device),
|
|
attn_mask.to(device=device),
|
|
)
|
|
input_kwargs = dict(
|
|
n_kv_head=num_kv_heads,
|
|
head_size=head_size,
|
|
mixed_precision=mixed_precision,
|
|
)
|
|
|
|
if return_debug_tensors:
|
|
output_nki, *debug_tensors = flash_attn_varlen_nkifunc(
|
|
*input_args, **input_kwargs)
|
|
else:
|
|
output_nki = flash_attn_varlen_nkifunc(*input_args, **input_kwargs)
|
|
debug_tensors = []
|
|
|
|
output_nki = torch.tensor(output_nki).cpu()
|
|
debug_tensors = [torch.tensor(dt).cpu() for dt in debug_tensors]
|
|
|
|
num_actual_tokens = sum(query_lens)
|
|
print(f"{num_actual_tokens=}")
|
|
# - o: shape (bs, n_heads, seq_q, d) -> (bs, seq_q, n_heads, d)
|
|
output_nki = output_nki.permute(
|
|
0, 2, 1, 3)[:, :, :, :head_size].cpu()[0, :num_actual_tokens, :, :]
|
|
output_ref_padded = F.pad(
|
|
output_ref,
|
|
(0, 0, 0, 0, 0, 0, 0, max_num_queries_padded - output_ref.shape[0]),
|
|
"constant",
|
|
0,
|
|
)
|
|
output_ref = output_ref_padded.transpose(0, 1)[0, :num_actual_tokens, :, :]
|
|
|
|
torch.testing.assert_close(output_nki, output_ref, atol=1e-2, rtol=0)
|