mirror of
https://git.datalinker.icu/vllm-project/vllm.git
synced 2025-12-10 12:45:33 +08:00
- **Add SPDX license headers to python source files**
- **Check for SPDX headers using pre-commit**
commit 9d7ef44c3cfb72ca4c32e1c677d99259d10d4745
Author: Russell Bryant <rbryant@redhat.com>
Date: Fri Jan 31 14:18:24 2025 -0500
Add SPDX license headers to python source files
This commit adds SPDX license headers to python source files as
recommended to
the project by the Linux Foundation. These headers provide a concise way
that is
both human and machine readable for communicating license information
for each
source file. It helps avoid any ambiguity about the license of the code
and can
also be easily used by tools to help manage license compliance.
The Linux Foundation runs license scans against the codebase to help
ensure
we are in compliance with the licenses of the code we use, including
dependencies. Having these headers in place helps that tool do its job.
More information can be found on the SPDX site:
- https://spdx.dev/learn/handling-license-info/
Signed-off-by: Russell Bryant <rbryant@redhat.com>
commit 5a1cf1cb3b80759131c73f6a9dddebccac039dea
Author: Russell Bryant <rbryant@redhat.com>
Date: Fri Jan 31 14:36:32 2025 -0500
Check for SPDX headers using pre-commit
Signed-off-by: Russell Bryant <rbryant@redhat.com>
---------
Signed-off-by: Russell Bryant <rbryant@redhat.com>
227 lines
9.6 KiB
Python
227 lines
9.6 KiB
Python
# SPDX-License-Identifier: Apache-2.0
|
|
|
|
from typing import Dict, List, Set, Tuple
|
|
|
|
import numpy as np
|
|
import pytest
|
|
import torch
|
|
|
|
from vllm.sampling_params import SamplingParams
|
|
from vllm.utils import is_pin_memory_available, make_tensor_with_pad
|
|
from vllm.v1.sample.metadata import SamplingMetadata
|
|
from vllm.v1.worker.gpu_input_batch import CachedRequestState, InputBatch
|
|
|
|
VOCAB_SIZE = 1024
|
|
NUM_OUTPUT_TOKENS = 20
|
|
MAX_PROMPT_SIZE = 100
|
|
CUDA_DEVICES = [
|
|
f"cuda:{i}" for i in range(1 if torch.cuda.device_count() == 1 else 2)
|
|
]
|
|
MAX_NUM_PROMPT_TOKENS = 64
|
|
|
|
|
|
def _remove_requests(
|
|
input_batch: InputBatch, batch_size: int,
|
|
reqs: List[CachedRequestState]) -> Tuple[Set[str], List[int]]:
|
|
"""
|
|
Remove some requests randomly from the batch and returns a Tuple
|
|
of 1) set of request removed 2) indices of the requests removed
|
|
ordered in descending order
|
|
"""
|
|
|
|
num_reqs_to_remove = np.random.randint(0, batch_size)
|
|
req_indices_to_remove: Set[int] = set()
|
|
for _ in range(num_reqs_to_remove):
|
|
req_index_to_remove = np.random.randint(0, batch_size)
|
|
req_indices_to_remove.add(req_index_to_remove)
|
|
|
|
req_indices_to_remove_list = list(req_indices_to_remove)
|
|
req_indices_to_remove_list.sort(reverse=True)
|
|
req_ids_to_remove: Set[str] = set()
|
|
for index in req_indices_to_remove:
|
|
input_batch.remove_request(reqs[index].req_id)
|
|
req_ids_to_remove.add(reqs[index].req_id)
|
|
return (req_ids_to_remove, req_indices_to_remove_list)
|
|
|
|
|
|
def _construct_expected_sampling_metadata(
|
|
reqs: List[CachedRequestState], req_ids_retained: Set[int],
|
|
req_id_index_in_input_batch: Dict[str, int],
|
|
device: torch.device) -> SamplingMetadata:
|
|
"""
|
|
Constructs and returns the expected SamplingMetadata for this
|
|
batch.
|
|
"""
|
|
num_reqs = len(req_ids_retained)
|
|
output_token_ids: List[List[int]] = [list() for _ in range(num_reqs)]
|
|
prompt_token_ids: List[List[int]] = [list() for _ in range(num_reqs)]
|
|
presence_penalties = [0.0 for _ in range(num_reqs)]
|
|
frequency_penalties = [0.0 for _ in range(num_reqs)]
|
|
repetition_penalties = [1.0 for _ in range(num_reqs)]
|
|
top_k = [0 for _ in range(num_reqs)]
|
|
top_p = [0.0 for _ in range(num_reqs)]
|
|
temperature = [0.0 for _ in range(num_reqs)]
|
|
stop_token_ids: List[Set[int]] = [set() for _ in range(num_reqs)]
|
|
min_tokens = [0 for _ in range(num_reqs)]
|
|
for req in reqs:
|
|
if req.req_id not in req_ids_retained:
|
|
continue
|
|
index_in_input_batch = req_id_index_in_input_batch[req.req_id]
|
|
output_token_ids[index_in_input_batch] = req.output_token_ids
|
|
prompt_token_ids[index_in_input_batch] = req.prompt_token_ids
|
|
presence_penalties[
|
|
index_in_input_batch] = req.sampling_params.presence_penalty
|
|
frequency_penalties[
|
|
index_in_input_batch] = req.sampling_params.frequency_penalty
|
|
repetition_penalties[
|
|
index_in_input_batch] = req.sampling_params.repetition_penalty
|
|
top_k[index_in_input_batch] = req.sampling_params.top_k
|
|
top_p[index_in_input_batch] = req.sampling_params.top_p
|
|
temperature[index_in_input_batch] = req.sampling_params.temperature
|
|
stop_token_ids[
|
|
index_in_input_batch] = req.sampling_params.all_stop_token_ids
|
|
min_tokens[index_in_input_batch] = req.sampling_params.min_tokens
|
|
|
|
|
|
return SamplingMetadata(
|
|
temperature=torch.tensor(temperature, dtype=torch.float, device=device),
|
|
all_greedy=False,
|
|
all_random=True,
|
|
top_p=torch.tensor(top_p, dtype=torch.float, device=device),
|
|
top_k=torch.tensor(top_k, dtype=torch.int, device=device),
|
|
no_top_p=all(x == 1.0 for x in top_p),
|
|
no_top_k=all(x == 0 for x in top_k),
|
|
generators={},
|
|
max_num_logprobs=0,
|
|
prompt_token_ids= make_tensor_with_pad(
|
|
prompt_token_ids,
|
|
pad=VOCAB_SIZE,
|
|
device=torch.device(device),
|
|
dtype=torch.int64,
|
|
),
|
|
frequency_penalties=torch.tensor(
|
|
frequency_penalties, dtype=torch.float,
|
|
device=device),
|
|
presence_penalties=torch.tensor(
|
|
presence_penalties, dtype=torch.float,
|
|
device=device),
|
|
repetition_penalties=torch.tensor(
|
|
repetition_penalties, dtype=torch.float,
|
|
device=device),
|
|
output_token_ids=output_token_ids,
|
|
min_tokens=min_tokens,
|
|
stop_token_ids=stop_token_ids,
|
|
no_penalties=(all(x ==0 for x in presence_penalties) and \
|
|
all(x ==0 for x in frequency_penalties) and \
|
|
all(x ==1 for x in repetition_penalties))
|
|
)
|
|
|
|
|
|
def _create_sampling_params():
|
|
return SamplingParams(top_k=np.random.randint(1, 10),
|
|
top_p=np.random.uniform(0.0, 1.0),
|
|
presence_penalty=np.random.uniform(-2.0, 2.0),
|
|
repetition_penalty=np.random.uniform(0.0, 2.0),
|
|
frequency_penalty=np.random.uniform(-2.0, 2.0),
|
|
min_tokens=np.random.randint(1, 10),
|
|
stop_token_ids=[
|
|
np.random.randint(0, VOCAB_SIZE)
|
|
for _ in range(np.random.randint(10))
|
|
])
|
|
|
|
|
|
def _construct_cached_request_state(req_id_suffix: int):
|
|
prompt_token_ids = [
|
|
np.random.randint(0, VOCAB_SIZE)
|
|
for _ in range(np.random.randint(0, MAX_PROMPT_SIZE))
|
|
]
|
|
output_token_ids = [
|
|
np.random.randint(0, VOCAB_SIZE)
|
|
for _ in range(np.random.randint(0, NUM_OUTPUT_TOKENS))
|
|
]
|
|
return CachedRequestState(req_id=f"req_id_{req_id_suffix}",
|
|
prompt_token_ids=prompt_token_ids,
|
|
prompt=None,
|
|
sampling_params=_create_sampling_params(),
|
|
mm_inputs=[],
|
|
mm_positions=[],
|
|
block_ids=[],
|
|
generator=None,
|
|
num_computed_tokens=len(output_token_ids),
|
|
output_token_ids=output_token_ids)
|
|
|
|
|
|
@pytest.mark.parametrize("device", CUDA_DEVICES)
|
|
@pytest.mark.parametrize("batch_size", [1, 2, 32, 64])
|
|
def test_sampling_metadata_in_input_batch(device: str, batch_size: int):
|
|
"""
|
|
Tests the logic for managing sampling metadata in the InputBatch.
|
|
|
|
This test involves adding a set of requests to the InputBatch,
|
|
followed by removing a subset of them. Afterward, the batch is compacted,
|
|
and the `make_sampling_metadata` method is invoked on the batch. The
|
|
output of `make_sampling_metadata` is then compared against the expected
|
|
results to ensure correctness.
|
|
"""
|
|
input_batch: InputBatch = InputBatch(max_num_reqs=batch_size,
|
|
max_model_len=1024,
|
|
max_num_blocks_per_req=10,
|
|
device=torch.device(device),
|
|
pin_memory=is_pin_memory_available(),
|
|
vocab_size=1024)
|
|
reqs: List[CachedRequestState] = []
|
|
req_id_reqs = {}
|
|
req_id_output_token_ids = {}
|
|
# Add requests
|
|
for req_index in range(batch_size):
|
|
req: CachedRequestState = _construct_cached_request_state(req_index)
|
|
input_batch.add_request(req, req_index)
|
|
reqs.append(req)
|
|
req_id_reqs[req.req_id] = req
|
|
req_id_output_token_ids[req.req_id] = req.output_token_ids
|
|
|
|
# Remove some requests
|
|
req_ids_to_remove, req_indices_to_remove = _remove_requests(
|
|
input_batch, batch_size, reqs)
|
|
req_ids_retained = set(req_id_reqs.keys()) - req_ids_to_remove
|
|
|
|
# Compact the input batch
|
|
input_batch.condense(req_indices_to_remove)
|
|
|
|
# Generate the sampling metadata
|
|
sampling_metadata = input_batch.make_sampling_metadata(
|
|
req_id_output_token_ids, skip_copy=False)
|
|
|
|
# Create expected output.
|
|
expected_sampling_metadata = _construct_expected_sampling_metadata(
|
|
reqs,
|
|
req_ids_retained,
|
|
input_batch.req_id_to_index,
|
|
device=torch.device(device))
|
|
|
|
# Assert the actual and expected output.
|
|
assert torch.allclose(expected_sampling_metadata.temperature,
|
|
sampling_metadata.temperature)
|
|
assert torch.allclose(expected_sampling_metadata.top_p,
|
|
sampling_metadata.top_p)
|
|
assert torch.allclose(expected_sampling_metadata.top_k,
|
|
sampling_metadata.top_k)
|
|
assert torch.allclose(expected_sampling_metadata.frequency_penalties,
|
|
sampling_metadata.frequency_penalties)
|
|
assert torch.allclose(expected_sampling_metadata.presence_penalties,
|
|
sampling_metadata.presence_penalties)
|
|
assert torch.allclose(expected_sampling_metadata.repetition_penalties,
|
|
sampling_metadata.repetition_penalties)
|
|
assert torch.allclose(expected_sampling_metadata.prompt_token_ids,
|
|
sampling_metadata.prompt_token_ids)
|
|
assert (expected_sampling_metadata.output_token_ids ==
|
|
sampling_metadata.output_token_ids)
|
|
assert (
|
|
expected_sampling_metadata.min_tokens == sampling_metadata.min_tokens)
|
|
assert (expected_sampling_metadata.stop_token_ids ==
|
|
sampling_metadata.stop_token_ids)
|
|
assert (expected_sampling_metadata.no_penalties ==
|
|
sampling_metadata.no_penalties)
|
|
assert (expected_sampling_metadata.no_top_p == sampling_metadata.no_top_p)
|
|
assert (expected_sampling_metadata.no_top_k == sampling_metadata.no_top_k)
|