mirror of
https://git.datalinker.icu/vllm-project/vllm.git
synced 2026-01-11 21:44:44 +08:00
- **Add SPDX license headers to python source files**
- **Check for SPDX headers using pre-commit**
commit 9d7ef44c3cfb72ca4c32e1c677d99259d10d4745
Author: Russell Bryant <rbryant@redhat.com>
Date: Fri Jan 31 14:18:24 2025 -0500
Add SPDX license headers to python source files
This commit adds SPDX license headers to python source files as
recommended to
the project by the Linux Foundation. These headers provide a concise way
that is
both human and machine readable for communicating license information
for each
source file. It helps avoid any ambiguity about the license of the code
and can
also be easily used by tools to help manage license compliance.
The Linux Foundation runs license scans against the codebase to help
ensure
we are in compliance with the licenses of the code we use, including
dependencies. Having these headers in place helps that tool do its job.
More information can be found on the SPDX site:
- https://spdx.dev/learn/handling-license-info/
Signed-off-by: Russell Bryant <rbryant@redhat.com>
commit 5a1cf1cb3b80759131c73f6a9dddebccac039dea
Author: Russell Bryant <rbryant@redhat.com>
Date: Fri Jan 31 14:36:32 2025 -0500
Check for SPDX headers using pre-commit
Signed-off-by: Russell Bryant <rbryant@redhat.com>
---------
Signed-off-by: Russell Bryant <rbryant@redhat.com>
1278 lines
48 KiB
Python
1278 lines
48 KiB
Python
# SPDX-License-Identifier: Apache-2.0
|
|
|
|
# Copyright 2023 The vLLM team.
|
|
# Adapted from
|
|
# https://github.com/NVIDIA/Megatron-LM/blob/main/megatron/core/parallel_state.py
|
|
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
|
|
"""vLLM distributed state.
|
|
It takes over the control of the distributed environment from PyTorch.
|
|
The typical workflow is:
|
|
|
|
- call `init_distributed_environment` to initialize the distributed environment.
|
|
- call `initialize_model_parallel` or `ensure_model_parallel_initialized` to
|
|
initialize the model parallel groups.
|
|
|
|
- any code dealing with the distributed stuff
|
|
|
|
- call `destroy_model_parallel` to destroy the model parallel groups.
|
|
- call `destroy_distributed_environment` to destroy the distributed environment.
|
|
|
|
If you only need to use the distributed environment without model/pipeline
|
|
parallelism, you can skip the model parallel initialization and destruction
|
|
steps.
|
|
"""
|
|
import contextlib
|
|
import gc
|
|
import pickle
|
|
import weakref
|
|
from collections import namedtuple
|
|
from contextlib import contextmanager, nullcontext
|
|
from dataclasses import dataclass
|
|
from multiprocessing import shared_memory
|
|
from typing import (TYPE_CHECKING, Any, Callable, Dict, List, Optional, Tuple,
|
|
Union)
|
|
from unittest.mock import patch
|
|
|
|
import torch
|
|
import torch.distributed
|
|
from torch.distributed import Backend, ProcessGroup
|
|
|
|
import vllm.distributed.kv_transfer.kv_transfer_agent as kv_transfer
|
|
import vllm.envs as envs
|
|
from vllm.distributed.utils import StatelessProcessGroup
|
|
from vllm.logger import init_logger
|
|
from vllm.utils import direct_register_custom_op, supports_custom_op
|
|
|
|
if TYPE_CHECKING:
|
|
from vllm.config import VllmConfig
|
|
|
|
|
|
@dataclass
|
|
class GraphCaptureContext:
|
|
stream: torch.cuda.Stream
|
|
|
|
|
|
TensorMetadata = namedtuple("TensorMetadata", ["device", "dtype", "size"])
|
|
|
|
|
|
def _split_tensor_dict(
|
|
tensor_dict: Dict[str, Union[torch.Tensor, Any]]
|
|
) -> Tuple[List[Tuple[str, Any]], List[torch.Tensor]]:
|
|
"""Split the tensor dictionary into two parts:
|
|
1. A list of (key, value) pairs. If the value is a tensor, it is replaced
|
|
by its metadata.
|
|
2. A list of tensors.
|
|
"""
|
|
metadata_list: List[Tuple[str, Any]] = []
|
|
tensor_list: List[torch.Tensor] = []
|
|
for key, value in tensor_dict.items():
|
|
if isinstance(value, torch.Tensor):
|
|
# Note: we cannot use `value.device` here,
|
|
# because it contains not only the device type but also the device
|
|
# index (e.g. "cuda:0"). We only need the device type.
|
|
# receiving side will set the device index.
|
|
device = value.device.type
|
|
metadata_list.append(
|
|
(key, TensorMetadata(device, value.dtype, value.size())))
|
|
tensor_list.append(value)
|
|
else:
|
|
metadata_list.append((key, value))
|
|
return metadata_list, tensor_list
|
|
|
|
|
|
_group_name_counter: Dict[str, int] = {}
|
|
|
|
|
|
def _get_unique_name(name: str) -> str:
|
|
"""Get a unique name for the group.
|
|
Example:
|
|
_get_unique_name("tp") -> "tp:0"
|
|
_get_unique_name("tp") -> "tp:1"
|
|
"""
|
|
if name not in _group_name_counter:
|
|
_group_name_counter[name] = 0
|
|
newname = f"{name}:{_group_name_counter[name]}"
|
|
_group_name_counter[name] += 1
|
|
return newname
|
|
|
|
|
|
_groups: Dict[str, Callable[[], Optional["GroupCoordinator"]]] = {}
|
|
|
|
|
|
def _register_group(group: "GroupCoordinator") -> None:
|
|
_groups[group.unique_name] = weakref.ref(group)
|
|
|
|
|
|
def all_reduce(tensor: torch.Tensor, group_name: str) -> torch.Tensor:
|
|
assert group_name in _groups, f"Group {group_name} is not found."
|
|
group = _groups[group_name]()
|
|
if group is None:
|
|
raise ValueError(f"Group {group_name} is destroyed.")
|
|
return group._all_reduce_out_place(tensor)
|
|
|
|
|
|
def all_reduce_fake(tensor: torch.Tensor, group_name: str) -> torch.Tensor:
|
|
return torch.empty_like(tensor)
|
|
|
|
|
|
if supports_custom_op():
|
|
direct_register_custom_op(
|
|
op_name="all_reduce",
|
|
op_func=all_reduce,
|
|
mutates_args=[],
|
|
fake_impl=all_reduce_fake,
|
|
)
|
|
|
|
|
|
class GroupCoordinator:
|
|
"""
|
|
PyTorch ProcessGroup wrapper for a group of processes.
|
|
PyTorch ProcessGroup is bound to one specific communication backend,
|
|
e.g. NCCL, Gloo, MPI, etc.
|
|
GroupCoordinator takes charge of all the communication operations among
|
|
the processes in the group. It can route the communication to
|
|
a specific implementation (e.g. switch allreduce implementation
|
|
based on the tensor size and cuda graph mode).
|
|
"""
|
|
|
|
# available attributes:
|
|
rank: int # global rank
|
|
ranks: List[int] # global ranks in the group
|
|
world_size: int # size of the group
|
|
# difference between `local_rank` and `rank_in_group`:
|
|
# if we have a group of size 4 across two nodes:
|
|
# Process | Node | Rank | Local Rank | Rank in Group
|
|
# 0 | 0 | 0 | 0 | 0
|
|
# 1 | 0 | 1 | 1 | 1
|
|
# 2 | 1 | 2 | 0 | 2
|
|
# 3 | 1 | 3 | 1 | 3
|
|
local_rank: int # local rank used to assign devices
|
|
rank_in_group: int # rank inside the group
|
|
cpu_group: ProcessGroup # group for CPU communication
|
|
device_group: ProcessGroup # group for device communication
|
|
use_pynccl: bool # a hint of whether to use PyNccl
|
|
use_custom_allreduce: bool # a hint of whether to use CustomAllreduce
|
|
# communicators are only created for world size > 1
|
|
pynccl_comm: Optional[Any] # PyNccl communicator
|
|
ca_comm: Optional[Any] # Custom allreduce communicator
|
|
mq_broadcaster: Optional[Any] # shared memory broadcaster
|
|
|
|
def __init__(
|
|
self,
|
|
group_ranks: List[List[int]],
|
|
local_rank: int,
|
|
torch_distributed_backend: Union[str, Backend],
|
|
use_pynccl: bool,
|
|
use_custom_allreduce: bool,
|
|
use_tpu_communicator: bool,
|
|
use_hpu_communicator: bool,
|
|
use_xpu_communicator: bool,
|
|
use_message_queue_broadcaster: bool = False,
|
|
group_name: Optional[str] = None,
|
|
):
|
|
group_name = group_name or "anonymous"
|
|
self.unique_name = _get_unique_name(group_name)
|
|
_register_group(self)
|
|
|
|
self.rank = torch.distributed.get_rank()
|
|
self.local_rank = local_rank
|
|
self.device_group = None
|
|
self.cpu_group = None
|
|
|
|
for ranks in group_ranks:
|
|
device_group = torch.distributed.new_group(
|
|
ranks, backend=torch_distributed_backend)
|
|
# a group with `gloo` backend, to allow direct coordination between
|
|
# processes through the CPU.
|
|
cpu_group = torch.distributed.new_group(ranks, backend="gloo")
|
|
if self.rank in ranks:
|
|
self.ranks = ranks
|
|
self.world_size = len(ranks)
|
|
self.rank_in_group = ranks.index(self.rank)
|
|
self.device_group = device_group
|
|
self.cpu_group = cpu_group
|
|
|
|
assert self.cpu_group is not None
|
|
assert self.device_group is not None
|
|
|
|
from vllm.platforms import current_platform
|
|
if current_platform.is_cuda_alike():
|
|
self.device = torch.device(f"cuda:{local_rank}")
|
|
else:
|
|
self.device = torch.device("cpu")
|
|
|
|
self.use_pynccl = use_pynccl
|
|
self.use_custom_allreduce = use_custom_allreduce
|
|
self.use_tpu_communicator = use_tpu_communicator
|
|
self.use_hpu_communicator = use_hpu_communicator
|
|
self.use_xpu_communicator = use_xpu_communicator
|
|
|
|
# lazy import to avoid documentation build error
|
|
from vllm.distributed.device_communicators.custom_all_reduce import (
|
|
CustomAllreduce)
|
|
from vllm.distributed.device_communicators.pynccl import (
|
|
PyNcclCommunicator)
|
|
|
|
self.pynccl_comm: Optional[PyNcclCommunicator] = None
|
|
if use_pynccl and self.world_size > 1:
|
|
self.pynccl_comm = PyNcclCommunicator(
|
|
group=self.cpu_group,
|
|
device=self.device,
|
|
)
|
|
|
|
self.ca_comm: Optional[CustomAllreduce] = None
|
|
if use_custom_allreduce and self.world_size > 1:
|
|
# Initialize a custom fast all-reduce implementation.
|
|
self.ca_comm = CustomAllreduce(
|
|
group=self.cpu_group,
|
|
device=self.device,
|
|
)
|
|
|
|
from vllm.distributed.device_communicators.tpu_communicator import (
|
|
TpuCommunicator)
|
|
self.tpu_communicator: Optional[TpuCommunicator] = None
|
|
if use_tpu_communicator and self.world_size > 1:
|
|
self.tpu_communicator = TpuCommunicator(group=self.cpu_group)
|
|
|
|
from vllm.distributed.device_communicators.hpu_communicator import (
|
|
HpuCommunicator)
|
|
self.hpu_communicator: Optional[HpuCommunicator]
|
|
if use_hpu_communicator and self.world_size > 1:
|
|
self.hpu_communicator = HpuCommunicator(group=self.device_group)
|
|
|
|
from vllm.distributed.device_communicators.xpu_communicator import (
|
|
XpuCommunicator)
|
|
self.xpu_communicator: Optional[XpuCommunicator]
|
|
if use_xpu_communicator and self.world_size > 1:
|
|
self.xpu_communicator = XpuCommunicator(group=self.device_group)
|
|
|
|
from vllm.distributed.device_communicators.shm_broadcast import (
|
|
MessageQueue)
|
|
self.mq_broadcaster: Optional[MessageQueue] = None
|
|
if use_message_queue_broadcaster and self.world_size > 1:
|
|
self.mq_broadcaster = MessageQueue.create_from_process_group(
|
|
self.cpu_group, 1 << 22, 6)
|
|
|
|
@property
|
|
def first_rank(self):
|
|
"""Return the global rank of the first process in the group"""
|
|
return self.ranks[0]
|
|
|
|
@property
|
|
def last_rank(self):
|
|
"""Return the global rank of the last process in the group"""
|
|
return self.ranks[-1]
|
|
|
|
@property
|
|
def is_first_rank(self):
|
|
"""Return whether the caller is the first process in the group"""
|
|
return self.rank == self.first_rank
|
|
|
|
@property
|
|
def is_last_rank(self):
|
|
"""Return whether the caller is the last process in the group"""
|
|
return self.rank == self.last_rank
|
|
|
|
@property
|
|
def next_rank(self):
|
|
"""Return the global rank of the process that follows the caller"""
|
|
rank_in_group = self.rank_in_group
|
|
world_size = self.world_size
|
|
return self.ranks[(rank_in_group + 1) % world_size]
|
|
|
|
@property
|
|
def prev_rank(self):
|
|
"""Return the global rank of the process that precedes the caller"""
|
|
rank_in_group = self.rank_in_group
|
|
world_size = self.world_size
|
|
return self.ranks[(rank_in_group - 1) % world_size]
|
|
|
|
@contextmanager
|
|
def graph_capture(
|
|
self, graph_capture_context: Optional[GraphCaptureContext] = None):
|
|
if graph_capture_context is None:
|
|
stream = torch.cuda.Stream()
|
|
graph_capture_context = GraphCaptureContext(stream)
|
|
else:
|
|
stream = graph_capture_context.stream
|
|
|
|
ca_comm = self.ca_comm
|
|
maybe_ca_context = nullcontext(
|
|
) if ca_comm is None else ca_comm.capture()
|
|
|
|
# ensure all initialization operations complete before attempting to
|
|
# capture the graph on another stream
|
|
curr_stream = torch.cuda.current_stream()
|
|
if curr_stream != stream:
|
|
stream.wait_stream(curr_stream)
|
|
|
|
with torch.cuda.stream(stream), maybe_ca_context:
|
|
yield graph_capture_context
|
|
|
|
def all_reduce(self, input_: torch.Tensor) -> torch.Tensor:
|
|
"""
|
|
User-facing all-reduce function before we actually call the
|
|
all-reduce operation.
|
|
|
|
We need this because Dynamo does not support passing an arbitrary
|
|
object (`self` in this case) to a custom op. We need to pass the
|
|
group name as a string, and then look up the group coordinator from
|
|
the group name, dispatch the all-reduce operation to the group
|
|
coordinator.
|
|
|
|
In addition, PyTorch custom ops do not support mutation or returning
|
|
a new tensor in the same op. So we always make the all-reduce operation
|
|
out-of-place.
|
|
"""
|
|
# Bypass the function if we are using only 1 GPU.
|
|
if self.world_size == 1:
|
|
return input_
|
|
|
|
if input_.is_cpu:
|
|
import intel_extension_for_pytorch as ipex
|
|
ipex.distributed.all_reduce(input_, group=self.device_group)
|
|
return input_
|
|
|
|
if self.tpu_communicator is not None and \
|
|
not self.tpu_communicator.disabled:
|
|
# TPU handles Dynamo with its own logic.
|
|
return self.tpu_communicator.all_reduce(input_)
|
|
|
|
if self.hpu_communicator is not None and \
|
|
not self.hpu_communicator.disabled:
|
|
return self.hpu_communicator.all_reduce(input_)
|
|
|
|
if self.xpu_communicator is not None and \
|
|
not self.xpu_communicator.disabled:
|
|
return self.xpu_communicator.all_reduce(input_)
|
|
|
|
return torch.ops.vllm.all_reduce(input_, group_name=self.unique_name)
|
|
|
|
def _all_reduce_out_place(self, input_: torch.Tensor) -> torch.Tensor:
|
|
# always try custom allreduce first,
|
|
# and then pynccl.
|
|
ca_comm = self.ca_comm
|
|
if ca_comm is not None and not ca_comm.disabled and \
|
|
ca_comm.should_custom_ar(input_):
|
|
out = ca_comm.custom_all_reduce(input_)
|
|
assert out is not None
|
|
return out
|
|
pynccl_comm = self.pynccl_comm
|
|
assert pynccl_comm is not None
|
|
out = pynccl_comm.all_reduce(input_)
|
|
if out is None:
|
|
# fall back to the default all-reduce using PyTorch.
|
|
# this usually happens during testing.
|
|
# when we run the model, allreduce only happens for the TP
|
|
# group, where we always have either custom allreduce or pynccl.
|
|
out = input_.clone()
|
|
torch.distributed.all_reduce(out, group=self.device_group)
|
|
return out
|
|
|
|
def all_gather(self, input_: torch.Tensor, dim: int = -1) -> torch.Tensor:
|
|
world_size = self.world_size
|
|
# Bypass the function if we are using only 1 GPU.
|
|
if world_size == 1:
|
|
return input_
|
|
assert -input_.dim() <= dim < input_.dim(), (
|
|
f"Invalid dim ({dim}) for input tensor with shape {input_.size()}")
|
|
|
|
# For TPUs, use TPU communicator.
|
|
tpu_comm = self.tpu_communicator
|
|
if tpu_comm is not None and not tpu_comm.disabled:
|
|
return tpu_comm.all_gather(input_, dim)
|
|
|
|
# For HPUs, use HPU communicator.
|
|
hpu_comm = self.hpu_communicator
|
|
if hpu_comm is not None and not hpu_comm.disabled:
|
|
return hpu_comm.all_gather(input_, dim)
|
|
|
|
if dim < 0:
|
|
# Convert negative dim to positive.
|
|
dim += input_.dim()
|
|
input_size = input_.size()
|
|
# NOTE: we have to use concat-style all-gather here,
|
|
# stack-style all-gather has compatibility issues with
|
|
# torch.compile . see https://github.com/pytorch/pytorch/issues/138795
|
|
output_size = (input_size[0] * world_size, ) + input_size[1:]
|
|
# Allocate output tensor.
|
|
output_tensor = torch.empty(output_size,
|
|
dtype=input_.dtype,
|
|
device=input_.device)
|
|
# All-gather.
|
|
torch.distributed.all_gather_into_tensor(output_tensor,
|
|
input_,
|
|
group=self.device_group)
|
|
# Reshape
|
|
output_tensor = output_tensor.reshape((world_size, ) + input_size)
|
|
output_tensor = output_tensor.movedim(0, dim)
|
|
output_tensor = output_tensor.reshape(input_size[:dim] +
|
|
(world_size *
|
|
input_size[dim], ) +
|
|
input_size[dim + 1:])
|
|
return output_tensor
|
|
|
|
def gather(self,
|
|
input_: torch.Tensor,
|
|
dst: int = 0,
|
|
dim: int = -1) -> Optional[torch.Tensor]:
|
|
"""
|
|
NOTE: We assume that the input tensor is on the same device across
|
|
all the ranks.
|
|
NOTE: `dst` is the local rank of the destination rank.
|
|
"""
|
|
world_size = self.world_size
|
|
# Bypass the function if we are using only 1 GPU.
|
|
if world_size == 1:
|
|
return input_
|
|
assert -input_.dim() <= dim < input_.dim(), (
|
|
f"Invalid dim ({dim}) for input tensor with shape {input_.size()}")
|
|
if dim < 0:
|
|
# Convert negative dim to positive.
|
|
dim += input_.dim()
|
|
if self.xpu_communicator is not None and \
|
|
not self.xpu_communicator.disabled:
|
|
return self.xpu_communicator.gather(input_, self.rank_in_group,
|
|
dst, dim)
|
|
# Allocate output tensor.
|
|
if self.rank_in_group == dst:
|
|
gather_list = [torch.empty_like(input_) for _ in range(world_size)]
|
|
else:
|
|
gather_list = None
|
|
# Gather.
|
|
torch.distributed.gather(input_,
|
|
gather_list,
|
|
dst=self.ranks[dst],
|
|
group=self.device_group)
|
|
if self.rank_in_group == dst:
|
|
output_tensor = torch.cat(gather_list, dim=dim)
|
|
else:
|
|
output_tensor = None
|
|
return output_tensor
|
|
|
|
def broadcast(self, input_: torch.Tensor, src: int = 0):
|
|
"""Broadcast the input tensor.
|
|
NOTE: `src` is the local rank of the source rank.
|
|
"""
|
|
assert src < self.world_size, f"Invalid src rank ({src})"
|
|
|
|
# Bypass the function if we are using only 1 GPU.
|
|
if self.world_size == 1:
|
|
return input_
|
|
# Broadcast.
|
|
torch.distributed.broadcast(input_,
|
|
src=self.ranks[src],
|
|
group=self.device_group)
|
|
return input_
|
|
|
|
def broadcast_object(self, obj: Optional[Any] = None, src: int = 0):
|
|
"""Broadcast the input object.
|
|
NOTE: `src` is the local rank of the source rank.
|
|
"""
|
|
assert src < self.world_size, f"Invalid src rank ({src})"
|
|
|
|
# Bypass the function if we are using only 1 GPU.
|
|
if self.world_size == 1:
|
|
return obj
|
|
if self.mq_broadcaster is not None:
|
|
assert src == 0, "Message queue broadcaster only supports src=0"
|
|
return self.mq_broadcaster.broadcast_object(obj)
|
|
if self.rank_in_group == src:
|
|
torch.distributed.broadcast_object_list([obj],
|
|
src=self.ranks[src],
|
|
group=self.cpu_group)
|
|
return obj
|
|
else:
|
|
recv = [None]
|
|
torch.distributed.broadcast_object_list(recv,
|
|
src=self.ranks[src],
|
|
group=self.cpu_group)
|
|
return recv[0]
|
|
|
|
def broadcast_object_list(self,
|
|
obj_list: List[Any],
|
|
src: int = 0,
|
|
group: Optional[ProcessGroup] = None):
|
|
"""Broadcast the input object list.
|
|
NOTE: `src` is the local rank of the source rank.
|
|
"""
|
|
assert src < self.world_size, f"Invalid src rank ({src})"
|
|
|
|
# Bypass the function if we are using only 1 GPU.
|
|
if self.world_size == 1:
|
|
return obj_list
|
|
# Broadcast.
|
|
torch.distributed.broadcast_object_list(obj_list,
|
|
src=self.ranks[src],
|
|
group=self.device_group)
|
|
return obj_list
|
|
|
|
def send_object(self, obj: Any, dst: int) -> None:
|
|
"""Send the input object list to the destination rank."""
|
|
"""NOTE: `dst` is the local rank of the destination rank."""
|
|
|
|
assert dst < self.world_size, f"Invalid dst rank ({dst})"
|
|
|
|
assert dst != self.rank_in_group, (
|
|
"Invalid destination rank. Destination rank is the same "
|
|
"as the current rank.")
|
|
|
|
# Serialize object to tensor and get the size as well
|
|
object_tensor = torch.frombuffer(pickle.dumps(obj), dtype=torch.uint8)
|
|
|
|
size_tensor = torch.tensor([object_tensor.numel()],
|
|
dtype=torch.long,
|
|
device="cpu")
|
|
|
|
# Send object size
|
|
|
|
torch.distributed.send(size_tensor,
|
|
dst=self.ranks[dst],
|
|
group=self.cpu_group)
|
|
|
|
# Send object
|
|
torch.distributed.send(object_tensor,
|
|
dst=self.ranks[dst],
|
|
group=self.cpu_group)
|
|
|
|
return None
|
|
|
|
def recv_object(self, src: int) -> Any:
|
|
"""Receive the input object list from the source rank."""
|
|
"""NOTE: `src` is the local rank of the source rank."""
|
|
|
|
assert src < self.world_size, f"Invalid src rank ({src})"
|
|
|
|
assert src != self.rank_in_group, (
|
|
"Invalid source rank. Source rank is the same as the current rank."
|
|
)
|
|
|
|
size_tensor = torch.empty(1, dtype=torch.long, device="cpu")
|
|
|
|
# Receive object size
|
|
rank_size = torch.distributed.recv(size_tensor,
|
|
src=self.ranks[src],
|
|
group=self.cpu_group)
|
|
|
|
# Tensor to receive serialized objects into.
|
|
object_tensor = torch.empty( # type: ignore[call-overload]
|
|
size_tensor.item(), # type: ignore[arg-type]
|
|
dtype=torch.uint8,
|
|
device="cpu")
|
|
|
|
rank_object = torch.distributed.recv(object_tensor,
|
|
src=self.ranks[src],
|
|
group=self.cpu_group)
|
|
|
|
assert rank_object == rank_size, (
|
|
"Received object sender rank does not match the size sender rank.")
|
|
|
|
obj = pickle.loads(object_tensor.numpy().tobytes())
|
|
|
|
return obj
|
|
|
|
def broadcast_tensor_dict(
|
|
self,
|
|
tensor_dict: Optional[Dict[str, Union[torch.Tensor, Any]]] = None,
|
|
src: int = 0,
|
|
group: Optional[ProcessGroup] = None,
|
|
metadata_group: Optional[ProcessGroup] = None
|
|
) -> Optional[Dict[str, Union[torch.Tensor, Any]]]:
|
|
"""Broadcast the input tensor dictionary.
|
|
NOTE: `src` is the local rank of the source rank.
|
|
"""
|
|
# Bypass the function if we are using only 1 GPU.
|
|
if (not torch.distributed.is_initialized() or self.world_size == 1):
|
|
return tensor_dict
|
|
|
|
group = self.device_group
|
|
metadata_group = self.cpu_group
|
|
assert src < self.world_size, f"Invalid src rank ({src})"
|
|
|
|
rank_in_group = self.rank_in_group
|
|
if rank_in_group == src:
|
|
metadata_list: List[Tuple[Any, Any]] = []
|
|
assert isinstance(
|
|
tensor_dict,
|
|
dict), (f"Expecting a dictionary, got {type(tensor_dict)}")
|
|
metadata_list, tensor_list = _split_tensor_dict(tensor_dict)
|
|
# `metadata_list` lives in CPU memory.
|
|
# `broadcast_object_list` has serialization & deserialization,
|
|
# all happening on CPU. Therefore, we can use the CPU group.
|
|
self.broadcast_object(metadata_list, src=src)
|
|
async_handles = []
|
|
for tensor in tensor_list:
|
|
if tensor.numel() == 0:
|
|
# Skip broadcasting empty tensors.
|
|
continue
|
|
if tensor.is_cpu:
|
|
# use metadata_group for CPU tensors
|
|
handle = torch.distributed.broadcast(tensor,
|
|
src=self.ranks[src],
|
|
group=metadata_group,
|
|
async_op=True)
|
|
else:
|
|
# use group for GPU tensors
|
|
handle = torch.distributed.broadcast(tensor,
|
|
src=self.ranks[src],
|
|
group=group,
|
|
async_op=True)
|
|
async_handles.append(handle)
|
|
for async_handle in async_handles:
|
|
async_handle.wait()
|
|
|
|
else:
|
|
metadata_list = self.broadcast_object(None, src=src)
|
|
tensor_dict = {}
|
|
async_handles = []
|
|
for key, value in metadata_list:
|
|
if isinstance(value, TensorMetadata):
|
|
tensor = torch.empty(value.size,
|
|
dtype=value.dtype,
|
|
device=value.device)
|
|
if tensor.numel() == 0:
|
|
# Skip broadcasting empty tensors.
|
|
tensor_dict[key] = tensor
|
|
continue
|
|
if tensor.is_cpu:
|
|
# use metadata_group for CPU tensors
|
|
handle = torch.distributed.broadcast(
|
|
tensor,
|
|
src=self.ranks[src],
|
|
group=metadata_group,
|
|
async_op=True)
|
|
else:
|
|
# use group for GPU tensors
|
|
handle = torch.distributed.broadcast(
|
|
tensor,
|
|
src=self.ranks[src],
|
|
group=group,
|
|
async_op=True)
|
|
async_handles.append(handle)
|
|
tensor_dict[key] = tensor
|
|
else:
|
|
tensor_dict[key] = value
|
|
for async_handle in async_handles:
|
|
async_handle.wait()
|
|
return tensor_dict
|
|
|
|
def send_tensor_dict(
|
|
self,
|
|
tensor_dict: Dict[str, Union[torch.Tensor, Any]],
|
|
dst: Optional[int] = None,
|
|
all_gather_group: Optional["GroupCoordinator"] = None,
|
|
) -> Optional[Dict[str, Union[torch.Tensor, Any]]]:
|
|
"""Send the input tensor dictionary.
|
|
NOTE: `dst` is the local rank of the source rank.
|
|
"""
|
|
# Bypass the function if we are using only 1 GPU.
|
|
if not torch.distributed.is_initialized() or self.world_size == 1:
|
|
return tensor_dict
|
|
|
|
all_gather_size = (1 if all_gather_group is None else
|
|
all_gather_group.world_size)
|
|
all_gather_rank = (0 if all_gather_group is None else
|
|
all_gather_group.rank_in_group)
|
|
|
|
group = self.device_group
|
|
metadata_group = self.cpu_group
|
|
|
|
if dst is None:
|
|
dst = (self.rank_in_group + 1) % self.world_size
|
|
assert dst < self.world_size, f"Invalid dst rank ({dst})"
|
|
|
|
metadata_list: List[Tuple[Any, Any]] = []
|
|
assert isinstance(
|
|
tensor_dict,
|
|
dict), f"Expecting a dictionary, got {type(tensor_dict)}"
|
|
metadata_list, tensor_list = _split_tensor_dict(tensor_dict)
|
|
# `metadata_list` lives in CPU memory.
|
|
# `send_object_list` has serialization & deserialization,
|
|
# all happening on CPU. Therefore, we can use the CPU group.
|
|
self.send_object(metadata_list, dst=dst)
|
|
for tensor in tensor_list:
|
|
if tensor.numel() == 0:
|
|
# Skip sending empty tensors.
|
|
continue
|
|
|
|
# send-allgather: send only a slice, then do allgather.
|
|
if (all_gather_group is not None
|
|
and tensor.numel() % all_gather_size == 0):
|
|
tensor = tensor.reshape(all_gather_size, -1)[all_gather_rank]
|
|
|
|
if tensor.is_cpu:
|
|
# use metadata_group for CPU tensors
|
|
torch.distributed.send(tensor,
|
|
dst=self.ranks[dst],
|
|
group=metadata_group)
|
|
else:
|
|
# use group for GPU tensors
|
|
torch.distributed.send(tensor,
|
|
dst=self.ranks[dst],
|
|
group=group)
|
|
return None
|
|
|
|
def recv_tensor_dict(
|
|
self,
|
|
src: Optional[int] = None,
|
|
all_gather_group: Optional["GroupCoordinator"] = None,
|
|
) -> Optional[Dict[str, Union[torch.Tensor, Any]]]:
|
|
"""Recv the input tensor dictionary.
|
|
NOTE: `src` is the local rank of the source rank.
|
|
"""
|
|
# Bypass the function if we are using only 1 GPU.
|
|
if not torch.distributed.is_initialized() or self.world_size == 1:
|
|
return None
|
|
|
|
all_gather_size = (1 if all_gather_group is None else
|
|
all_gather_group.world_size)
|
|
all_gather_rank = (0 if all_gather_group is None else
|
|
all_gather_group.rank_in_group)
|
|
|
|
group = self.device_group
|
|
metadata_group = self.cpu_group
|
|
|
|
if src is None:
|
|
src = (self.rank_in_group - 1) % self.world_size
|
|
assert src < self.world_size, f"Invalid src rank ({src})"
|
|
|
|
recv_metadata_list = self.recv_object(src=src)
|
|
tensor_dict: Dict[str, Any] = {}
|
|
for key, value in recv_metadata_list:
|
|
if isinstance(value, TensorMetadata):
|
|
tensor = torch.empty(value.size,
|
|
dtype=value.dtype,
|
|
device=value.device)
|
|
if tensor.numel() == 0:
|
|
# Skip broadcasting empty tensors.
|
|
tensor_dict[key] = tensor
|
|
continue
|
|
|
|
# send-allgather: send only a slice, then do allgather.
|
|
use_all_gather = (all_gather_group is not None
|
|
and tensor.numel() % all_gather_size == 0)
|
|
|
|
if use_all_gather:
|
|
orig_shape = tensor.shape
|
|
tensor = tensor.reshape(all_gather_size,
|
|
-1)[all_gather_rank]
|
|
|
|
if tensor.is_cpu:
|
|
# use metadata_group for CPU tensors
|
|
torch.distributed.recv(tensor,
|
|
src=self.ranks[src],
|
|
group=metadata_group)
|
|
else:
|
|
# use group for GPU tensors
|
|
torch.distributed.recv(tensor,
|
|
src=self.ranks[src],
|
|
group=group)
|
|
if use_all_gather:
|
|
# do the allgather
|
|
tensor = all_gather_group.all_gather( # type: ignore
|
|
tensor, dim=0)
|
|
tensor = tensor.reshape(orig_shape)
|
|
|
|
tensor_dict[key] = tensor
|
|
else:
|
|
tensor_dict[key] = value
|
|
return tensor_dict
|
|
|
|
def barrier(self):
|
|
"""Barrier synchronization among the group.
|
|
NOTE: don't use `device_group` here! `barrier` in NCCL is
|
|
terrible because it is internally a broadcast operation with
|
|
secretly created GPU tensors. It is easy to mess up the current
|
|
device. Use the CPU group instead.
|
|
"""
|
|
torch.distributed.barrier(group=self.cpu_group)
|
|
|
|
def send(self, tensor: torch.Tensor, dst: Optional[int] = None) -> None:
|
|
"""Sends a tensor to the destination rank in a non-blocking way"""
|
|
"""NOTE: `dst` is the local rank of the destination rank."""
|
|
if dst is None:
|
|
dst = (self.rank_in_group + 1) % self.world_size
|
|
|
|
pynccl_comm = self.pynccl_comm
|
|
if pynccl_comm is not None and not pynccl_comm.disabled:
|
|
pynccl_comm.send(tensor, dst)
|
|
else:
|
|
torch.distributed.send(tensor, self.ranks[dst], self.device_group)
|
|
|
|
def recv(self,
|
|
size: torch.Size,
|
|
dtype: torch.dtype,
|
|
src: Optional[int] = None) -> torch.Tensor:
|
|
"""Receives a tensor from the source rank."""
|
|
"""NOTE: `src` is the local rank of the source rank."""
|
|
if src is None:
|
|
src = (self.rank_in_group - 1) % self.world_size
|
|
|
|
tensor = torch.empty(size, dtype=dtype, device=self.device)
|
|
pynccl_comm = self.pynccl_comm
|
|
if pynccl_comm is not None and not pynccl_comm.disabled:
|
|
pynccl_comm.recv(tensor, src)
|
|
else:
|
|
torch.distributed.recv(tensor, self.ranks[src], self.device_group)
|
|
return tensor
|
|
|
|
def destroy(self):
|
|
if self.device_group is not None:
|
|
torch.distributed.destroy_process_group(self.device_group)
|
|
self.device_group = None
|
|
if self.cpu_group is not None:
|
|
torch.distributed.destroy_process_group(self.cpu_group)
|
|
self.cpu_group = None
|
|
if self.pynccl_comm is not None:
|
|
self.pynccl_comm = None
|
|
if self.ca_comm is not None:
|
|
self.ca_comm = None
|
|
if self.mq_broadcaster is not None:
|
|
self.mq_broadcaster = None
|
|
|
|
|
|
_WORLD: Optional[GroupCoordinator] = None
|
|
|
|
|
|
def get_world_group() -> GroupCoordinator:
|
|
assert _WORLD is not None, ("world group is not initialized")
|
|
return _WORLD
|
|
|
|
|
|
def init_world_group(ranks: List[int], local_rank: int,
|
|
backend: str) -> GroupCoordinator:
|
|
return GroupCoordinator(
|
|
group_ranks=[ranks],
|
|
local_rank=local_rank,
|
|
torch_distributed_backend=backend,
|
|
use_pynccl=False,
|
|
use_custom_allreduce=False,
|
|
use_tpu_communicator=False,
|
|
use_hpu_communicator=False,
|
|
use_xpu_communicator=False,
|
|
group_name="world",
|
|
)
|
|
|
|
|
|
def init_model_parallel_group(
|
|
group_ranks: List[List[int]],
|
|
local_rank: int,
|
|
backend: str,
|
|
use_custom_allreduce: Optional[bool] = None,
|
|
use_message_queue_broadcaster: bool = False,
|
|
group_name: Optional[str] = None,
|
|
) -> GroupCoordinator:
|
|
if use_custom_allreduce is None:
|
|
use_custom_allreduce = _ENABLE_CUSTOM_ALL_REDUCE
|
|
from vllm.platforms import current_platform
|
|
return GroupCoordinator(
|
|
group_ranks=group_ranks,
|
|
local_rank=local_rank,
|
|
torch_distributed_backend=backend,
|
|
use_pynccl=current_platform.is_cuda_alike(),
|
|
use_custom_allreduce=current_platform.is_cuda_alike()
|
|
and use_custom_allreduce,
|
|
use_tpu_communicator=True,
|
|
use_hpu_communicator=True,
|
|
use_xpu_communicator=True,
|
|
use_message_queue_broadcaster=use_message_queue_broadcaster,
|
|
group_name=group_name,
|
|
)
|
|
|
|
|
|
_TP: Optional[GroupCoordinator] = None
|
|
|
|
|
|
def get_tp_group() -> GroupCoordinator:
|
|
assert _TP is not None, ("tensor model parallel group is not initialized")
|
|
return _TP
|
|
|
|
|
|
# kept for backward compatibility
|
|
get_tensor_model_parallel_group = get_tp_group
|
|
|
|
_PP: Optional[GroupCoordinator] = None
|
|
|
|
|
|
def get_pp_group() -> GroupCoordinator:
|
|
assert _PP is not None, (
|
|
"pipeline model parallel group is not initialized")
|
|
return _PP
|
|
|
|
|
|
# kept for backward compatibility
|
|
get_pipeline_model_parallel_group = get_pp_group
|
|
|
|
_KV_TRANSFER: Optional[kv_transfer.KVTransferAgent] = None
|
|
|
|
|
|
def get_kv_transfer_group() -> kv_transfer.KVTransferAgent:
|
|
assert _KV_TRANSFER is not None, (
|
|
"disaggregated KV cache transfer parallel group is not initialized")
|
|
return _KV_TRANSFER
|
|
|
|
|
|
@contextmanager
|
|
def graph_capture(device: torch.device):
|
|
"""
|
|
`graph_capture` is a context manager which should surround the code that
|
|
is capturing the CUDA graph. Its main purpose is to ensure that the
|
|
some operations will be run after the graph is captured, before the graph
|
|
is replayed. It returns a `GraphCaptureContext` object which contains the
|
|
necessary data for the graph capture. Currently, it only contains the
|
|
stream that the graph capture is running on. This stream is set to the
|
|
current CUDA stream when the context manager is entered and reset to the
|
|
default stream when the context manager is exited. This is to ensure that
|
|
the graph capture is running on a separate stream from the default stream,
|
|
in order to explicitly distinguish the kernels to capture
|
|
from other kernels possibly launched on background in the default stream.
|
|
"""
|
|
context = GraphCaptureContext(torch.cuda.Stream(device=device))
|
|
with get_tp_group().graph_capture(context), get_pp_group().graph_capture(
|
|
context):
|
|
yield context
|
|
|
|
|
|
logger = init_logger(__name__)
|
|
|
|
_ENABLE_CUSTOM_ALL_REDUCE = True
|
|
|
|
|
|
def set_custom_all_reduce(enable: bool):
|
|
global _ENABLE_CUSTOM_ALL_REDUCE
|
|
_ENABLE_CUSTOM_ALL_REDUCE = enable
|
|
|
|
|
|
def init_distributed_environment(
|
|
world_size: int = -1,
|
|
rank: int = -1,
|
|
distributed_init_method: str = "env://",
|
|
local_rank: int = -1,
|
|
backend: str = "nccl",
|
|
):
|
|
logger.debug(
|
|
"world_size=%d rank=%d local_rank=%d "
|
|
"distributed_init_method=%s backend=%s", world_size, rank, local_rank,
|
|
distributed_init_method, backend)
|
|
if not torch.distributed.is_initialized():
|
|
assert distributed_init_method is not None, (
|
|
"distributed_init_method must be provided when initializing "
|
|
"distributed environment")
|
|
# this backend is used for WORLD
|
|
torch.distributed.init_process_group(
|
|
backend=backend,
|
|
init_method=distributed_init_method,
|
|
world_size=world_size,
|
|
rank=rank)
|
|
# set the local rank
|
|
# local_rank is not available in torch ProcessGroup,
|
|
# see https://github.com/pytorch/pytorch/issues/122816
|
|
if local_rank == -1:
|
|
# local rank not set, this usually happens in single-node
|
|
# setting, where we can use rank as local rank
|
|
if distributed_init_method == "env://":
|
|
local_rank = envs.LOCAL_RANK
|
|
else:
|
|
local_rank = rank
|
|
global _WORLD
|
|
if _WORLD is None:
|
|
ranks = list(range(torch.distributed.get_world_size()))
|
|
_WORLD = init_world_group(ranks, local_rank, backend)
|
|
else:
|
|
assert _WORLD.world_size == torch.distributed.get_world_size(), (
|
|
"world group already initialized with a different world size")
|
|
|
|
|
|
def initialize_model_parallel(
|
|
tensor_model_parallel_size: int = 1,
|
|
pipeline_model_parallel_size: int = 1,
|
|
backend: Optional[str] = None,
|
|
) -> None:
|
|
"""
|
|
Initialize model parallel groups.
|
|
|
|
Arguments:
|
|
tensor_model_parallel_size: number of GPUs used for tensor model
|
|
parallelism.
|
|
pipeline_model_parallel_size: number of GPUs used for pipeline model
|
|
parallelism.
|
|
|
|
Let's say we have a total of 8 GPUs denoted by g0 ... g7 and we
|
|
use 2 GPUs to parallelize the model tensor, and 4 GPUs to parallelize
|
|
the model pipeline. The present function will
|
|
create 4 tensor model-parallel groups and 2 pipeline model-parallel groups:
|
|
4 tensor model-parallel groups:
|
|
[g0, g1], [g2, g3], [g4, g5], [g6, g7]
|
|
2 pipeline model-parallel groups:
|
|
[g0, g2, g4, g6], [g1, g3, g5, g7]
|
|
Note that for efficiency, the caller should make sure adjacent ranks
|
|
are on the same DGX box. For example if we are using 2 DGX-1 boxes
|
|
with a total of 16 GPUs, rank 0 to 7 belong to the first box and
|
|
ranks 8 to 15 belong to the second box.
|
|
"""
|
|
# Get world size and rank. Ensure some consistencies.
|
|
assert torch.distributed.is_initialized()
|
|
world_size: int = torch.distributed.get_world_size()
|
|
backend = backend or torch.distributed.get_backend(
|
|
get_world_group().device_group)
|
|
|
|
if (world_size
|
|
!= tensor_model_parallel_size * pipeline_model_parallel_size):
|
|
raise RuntimeError(
|
|
f"world_size ({world_size}) is not equal to "
|
|
f"tensor_model_parallel_size ({tensor_model_parallel_size}) x "
|
|
f"pipeline_model_parallel_size ({pipeline_model_parallel_size})")
|
|
|
|
# Build the tensor model-parallel groups.
|
|
num_tensor_model_parallel_groups: int = (world_size //
|
|
tensor_model_parallel_size)
|
|
global _TP
|
|
assert _TP is None, ("tensor model parallel group is already initialized")
|
|
group_ranks = []
|
|
for i in range(num_tensor_model_parallel_groups):
|
|
ranks = list(
|
|
range(i * tensor_model_parallel_size,
|
|
(i + 1) * tensor_model_parallel_size))
|
|
group_ranks.append(ranks)
|
|
|
|
# message queue broadcaster is only used in tensor model parallel group
|
|
_TP = init_model_parallel_group(group_ranks,
|
|
get_world_group().local_rank,
|
|
backend,
|
|
use_message_queue_broadcaster=True,
|
|
group_name="tp")
|
|
|
|
# Build the pipeline model-parallel groups.
|
|
num_pipeline_model_parallel_groups: int = (world_size //
|
|
pipeline_model_parallel_size)
|
|
global _PP
|
|
assert _PP is None, (
|
|
"pipeline model parallel group is already initialized")
|
|
group_ranks = []
|
|
for i in range(num_pipeline_model_parallel_groups):
|
|
ranks = list(range(i, world_size, num_pipeline_model_parallel_groups))
|
|
group_ranks.append(ranks)
|
|
# pipeline parallel does not need custom allreduce
|
|
_PP = init_model_parallel_group(group_ranks,
|
|
get_world_group().local_rank,
|
|
backend,
|
|
use_custom_allreduce=False,
|
|
group_name="pp")
|
|
|
|
|
|
def ensure_kv_transfer_initialized(vllm_config: "VllmConfig") -> None:
|
|
"""
|
|
Initialize KV cache transfer parallel group.
|
|
"""
|
|
|
|
global _KV_TRANSFER
|
|
|
|
if vllm_config.kv_transfer_config is None:
|
|
return
|
|
|
|
if all([
|
|
vllm_config.kv_transfer_config.need_kv_parallel_group, _KV_TRANSFER
|
|
is None
|
|
]):
|
|
_KV_TRANSFER = kv_transfer.KVTransferAgent(
|
|
rank=get_world_group().rank,
|
|
local_rank=get_world_group().local_rank,
|
|
config=vllm_config)
|
|
|
|
|
|
def ensure_model_parallel_initialized(
|
|
tensor_model_parallel_size: int,
|
|
pipeline_model_parallel_size: int,
|
|
backend: Optional[str] = None,
|
|
) -> None:
|
|
"""Helper to initialize model parallel groups if they are not initialized,
|
|
or ensure tensor-parallel and pipeline-parallel sizes are equal to expected
|
|
values if the model parallel groups are initialized.
|
|
"""
|
|
backend = backend or torch.distributed.get_backend(
|
|
get_world_group().device_group)
|
|
if not model_parallel_is_initialized():
|
|
initialize_model_parallel(tensor_model_parallel_size,
|
|
pipeline_model_parallel_size, backend)
|
|
return
|
|
|
|
assert (
|
|
get_tensor_model_parallel_world_size() == tensor_model_parallel_size
|
|
), ("tensor parallel group already initialized, but of unexpected size: "
|
|
f"{get_tensor_model_parallel_world_size()=} vs. "
|
|
f"{tensor_model_parallel_size=}")
|
|
pp_world_size = get_pp_group().world_size
|
|
assert (pp_world_size == pipeline_model_parallel_size), (
|
|
"pipeline parallel group already initialized, but of unexpected size: "
|
|
f"{pp_world_size=} vs. "
|
|
f"{pipeline_model_parallel_size=}")
|
|
|
|
|
|
def model_parallel_is_initialized():
|
|
"""Check if tensor and pipeline parallel groups are initialized."""
|
|
return (_TP is not None and _PP is not None)
|
|
|
|
|
|
_TP_STATE_PATCHED = False
|
|
|
|
|
|
@contextmanager
|
|
def patch_tensor_parallel_group(tp_group: GroupCoordinator):
|
|
"""Patch the tp group temporarily until this function ends.
|
|
|
|
This method is for draft workers of speculative decoding to run draft model
|
|
with different tp degree from that of target model workers.
|
|
|
|
Args:
|
|
tp_group (GroupCoordinator): the tp group coordinator
|
|
"""
|
|
global _TP_STATE_PATCHED
|
|
assert not _TP_STATE_PATCHED, "Should not call when it's already patched"
|
|
|
|
_TP_STATE_PATCHED = True
|
|
old_tp_group = get_tp_group()
|
|
global _TP
|
|
_TP = tp_group
|
|
try:
|
|
yield
|
|
finally:
|
|
# restore the original state
|
|
_TP_STATE_PATCHED = False
|
|
_TP = old_tp_group
|
|
|
|
|
|
def get_tensor_model_parallel_world_size():
|
|
"""Return world size for the tensor model parallel group."""
|
|
return get_tp_group().world_size
|
|
|
|
|
|
def get_tensor_model_parallel_rank():
|
|
"""Return my rank for the tensor model parallel group."""
|
|
return get_tp_group().rank_in_group
|
|
|
|
|
|
def destroy_model_parallel():
|
|
"""Set the groups to none and destroy them."""
|
|
global _TP
|
|
if _TP:
|
|
_TP.destroy()
|
|
_TP = None
|
|
|
|
global _PP
|
|
if _PP:
|
|
_PP.destroy()
|
|
_PP = None
|
|
|
|
|
|
def destroy_distributed_environment():
|
|
global _WORLD
|
|
if _WORLD:
|
|
_WORLD.destroy()
|
|
_WORLD = None
|
|
if torch.distributed.is_initialized():
|
|
torch.distributed.destroy_process_group()
|
|
|
|
|
|
def cleanup_dist_env_and_memory(shutdown_ray: bool = False):
|
|
destroy_model_parallel()
|
|
destroy_distributed_environment()
|
|
with contextlib.suppress(AssertionError):
|
|
torch.distributed.destroy_process_group()
|
|
if shutdown_ray:
|
|
import ray # Lazy import Ray
|
|
ray.shutdown()
|
|
gc.collect()
|
|
from vllm.platforms import current_platform
|
|
if not current_platform.is_cpu():
|
|
torch.cuda.empty_cache()
|
|
try:
|
|
torch._C._host_emptyCache()
|
|
except AttributeError:
|
|
logger.warning(
|
|
"torch._C._host_emptyCache() only available in Pytorch >=2.5")
|
|
|
|
|
|
def in_the_same_node_as(pg: Union[ProcessGroup, StatelessProcessGroup],
|
|
source_rank: int = 0) -> List[bool]:
|
|
"""
|
|
This is a collective operation that returns if each rank is in the same node
|
|
as the source rank. It tests if processes are attached to the same
|
|
memory system (shared access to shared memory).
|
|
"""
|
|
if isinstance(pg, ProcessGroup):
|
|
assert torch.distributed.get_backend(
|
|
pg) != torch.distributed.Backend.NCCL, (
|
|
"in_the_same_node_as should be tested with a non-NCCL group.")
|
|
# local rank inside the group
|
|
rank = torch.distributed.get_rank(group=pg)
|
|
world_size = torch.distributed.get_world_size(group=pg)
|
|
|
|
# global ranks of the processes in the group
|
|
ranks = torch.distributed.get_process_group_ranks(pg)
|
|
else:
|
|
rank = pg.rank
|
|
world_size = pg.world_size
|
|
ranks = list(range(world_size))
|
|
|
|
# local tensor in each process to store the result
|
|
is_in_the_same_node = torch.tensor([0] * world_size, dtype=torch.int32)
|
|
|
|
magic_message = b"magic_message"
|
|
shm = None
|
|
|
|
try:
|
|
with contextlib.suppress(OSError):
|
|
if rank == source_rank:
|
|
# create a shared memory segment
|
|
shm = shared_memory.SharedMemory(create=True, size=128)
|
|
shm.buf[:len(magic_message)] = magic_message
|
|
if isinstance(pg, ProcessGroup):
|
|
torch.distributed.broadcast_object_list(
|
|
[shm.name], src=ranks[source_rank], group=pg)
|
|
else:
|
|
pg.broadcast_obj(shm.name, src=source_rank)
|
|
is_in_the_same_node[rank] = 1
|
|
else:
|
|
# try to open the shared memory segment
|
|
if isinstance(pg, ProcessGroup):
|
|
recv = [None]
|
|
torch.distributed.broadcast_object_list(
|
|
recv, src=ranks[source_rank], group=pg)
|
|
name = recv[0]
|
|
else:
|
|
name = pg.broadcast_obj(None, src=source_rank)
|
|
# fix to https://stackoverflow.com/q/62748654/9191338
|
|
# Python incorrectly tracks shared memory even if it is not
|
|
# created by the process. The following patch is a workaround.
|
|
with patch("multiprocessing.resource_tracker.register",
|
|
lambda *args, **kwargs: None):
|
|
shm = shared_memory.SharedMemory(name=name)
|
|
if shm.buf[:len(magic_message)] == magic_message:
|
|
is_in_the_same_node[rank] = 1
|
|
except Exception as e:
|
|
logger.error("Error ignored in is_in_the_same_node: %s", e)
|
|
finally:
|
|
if shm:
|
|
shm.close()
|
|
|
|
if isinstance(pg, ProcessGroup):
|
|
torch.distributed.barrier(group=pg)
|
|
else:
|
|
pg.barrier()
|
|
|
|
# clean up the shared memory segment
|
|
with contextlib.suppress(OSError):
|
|
if rank == source_rank and shm:
|
|
shm.unlink()
|
|
|
|
if isinstance(pg, ProcessGroup):
|
|
torch.distributed.all_reduce(is_in_the_same_node, group=pg)
|
|
aggregated_data = is_in_the_same_node
|
|
else:
|
|
aggregated_data = torch.zeros_like(is_in_the_same_node)
|
|
for i in range(world_size):
|
|
rank_data = pg.broadcast_obj(is_in_the_same_node, src=i)
|
|
aggregated_data += rank_data
|
|
|
|
return [x == 1 for x in aggregated_data.tolist()]
|