mirror of
https://git.datalinker.icu/vllm-project/vllm.git
synced 2025-12-20 23:46:10 +08:00
- **Add SPDX license headers to python source files**
- **Check for SPDX headers using pre-commit**
commit 9d7ef44c3cfb72ca4c32e1c677d99259d10d4745
Author: Russell Bryant <rbryant@redhat.com>
Date: Fri Jan 31 14:18:24 2025 -0500
Add SPDX license headers to python source files
This commit adds SPDX license headers to python source files as
recommended to
the project by the Linux Foundation. These headers provide a concise way
that is
both human and machine readable for communicating license information
for each
source file. It helps avoid any ambiguity about the license of the code
and can
also be easily used by tools to help manage license compliance.
The Linux Foundation runs license scans against the codebase to help
ensure
we are in compliance with the licenses of the code we use, including
dependencies. Having these headers in place helps that tool do its job.
More information can be found on the SPDX site:
- https://spdx.dev/learn/handling-license-info/
Signed-off-by: Russell Bryant <rbryant@redhat.com>
commit 5a1cf1cb3b80759131c73f6a9dddebccac039dea
Author: Russell Bryant <rbryant@redhat.com>
Date: Fri Jan 31 14:36:32 2025 -0500
Check for SPDX headers using pre-commit
Signed-off-by: Russell Bryant <rbryant@redhat.com>
---------
Signed-off-by: Russell Bryant <rbryant@redhat.com>
157 lines
6.0 KiB
Python
157 lines
6.0 KiB
Python
# SPDX-License-Identifier: Apache-2.0
|
|
|
|
from typing import List, Optional, Tuple, Union
|
|
|
|
import torch
|
|
from torch import nn
|
|
from transformers import PretrainedConfig
|
|
|
|
from vllm.attention import AttentionMetadata
|
|
from vllm.config import CacheConfig, VllmConfig
|
|
from vllm.distributed import get_pp_group
|
|
from vllm.model_executor.layers.layernorm import RMSNorm
|
|
from vllm.model_executor.layers.quantization import QuantizationConfig
|
|
from vllm.model_executor.models.internlm2 import (InternLM2Attention,
|
|
InternLM2ForCausalLM,
|
|
InternLM2MLP, InternLM2Model)
|
|
from vllm.sequence import IntermediateTensors
|
|
|
|
|
|
class InternLM2VEDecoderLayer(nn.Module):
|
|
|
|
def __init__(
|
|
self,
|
|
config: PretrainedConfig,
|
|
cache_config: Optional[CacheConfig] = None,
|
|
quant_config: Optional[QuantizationConfig] = None,
|
|
prefix: str = "",
|
|
) -> None:
|
|
super().__init__()
|
|
self.hidden_size = config.hidden_size
|
|
rope_theta = getattr(config, "rope_theta", 10000)
|
|
rope_scaling = getattr(config, "rope_scaling", None)
|
|
max_position_embeddings = getattr(config, "max_position_embeddings",
|
|
8192)
|
|
self.attention = InternLM2Attention(
|
|
hidden_size=self.hidden_size,
|
|
num_heads=config.num_attention_heads,
|
|
num_kv_heads=config.num_key_value_heads,
|
|
rope_theta=rope_theta,
|
|
rope_scaling=rope_scaling,
|
|
max_position_embeddings=max_position_embeddings,
|
|
cache_config=cache_config,
|
|
quant_config=quant_config,
|
|
prefix=f"{prefix}.attention",
|
|
)
|
|
self.feed_forward = InternLM2MLP(
|
|
hidden_size=self.hidden_size,
|
|
intermediate_size=config.intermediate_size,
|
|
hidden_act=config.hidden_act,
|
|
quant_config=quant_config,
|
|
prefix=f"{prefix}.feed_forward",
|
|
)
|
|
self.feed_forward_ve = InternLM2MLP(
|
|
hidden_size=self.hidden_size,
|
|
intermediate_size=config.intermediate_size,
|
|
hidden_act=config.hidden_act,
|
|
quant_config=quant_config,
|
|
prefix=f"{prefix}.feed_forward_ve",
|
|
)
|
|
self.attention_norm = RMSNorm(config.hidden_size,
|
|
eps=config.rms_norm_eps)
|
|
self.ffn_norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
|
|
|
def forward(
|
|
self,
|
|
positions: torch.Tensor,
|
|
hidden_states: torch.Tensor,
|
|
kv_cache: torch.Tensor,
|
|
attn_metadata: AttentionMetadata,
|
|
residual: Optional[torch.Tensor],
|
|
visual_token_mask: Optional[torch.Tensor] = None,
|
|
) -> Tuple[torch.Tensor, torch.Tensor]:
|
|
# Self Attention
|
|
if residual is None:
|
|
residual = hidden_states
|
|
hidden_states = self.attention_norm(hidden_states)
|
|
else:
|
|
hidden_states, residual = self.attention_norm(
|
|
hidden_states, residual)
|
|
hidden_states = self.attention(
|
|
positions=positions,
|
|
hidden_states=hidden_states,
|
|
kv_cache=kv_cache,
|
|
attn_metadata=attn_metadata,
|
|
)
|
|
|
|
# Fully Connected
|
|
hidden_states, residual = self.ffn_norm(hidden_states, residual)
|
|
if visual_token_mask is not None and visual_token_mask.any():
|
|
visual_token_mask = visual_token_mask.repeat(
|
|
1, self.hidden_size).bool()
|
|
text_token_mask = ~visual_token_mask
|
|
hidden_states[visual_token_mask] = self.feed_forward_ve(
|
|
hidden_states[visual_token_mask].reshape(
|
|
-1, self.hidden_size)).flatten()
|
|
if text_token_mask.any():
|
|
hidden_states[text_token_mask] = self.feed_forward(
|
|
hidden_states[text_token_mask].reshape(
|
|
-1, self.hidden_size)).flatten()
|
|
else:
|
|
hidden_states = self.feed_forward(hidden_states)
|
|
return hidden_states, residual
|
|
|
|
|
|
class InternLM2VEModel(InternLM2Model):
|
|
|
|
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
|
|
super().__init__(vllm_config=vllm_config,
|
|
prefix=prefix,
|
|
layer_type=InternLM2VEDecoderLayer)
|
|
|
|
def forward(
|
|
self,
|
|
input_ids: torch.Tensor,
|
|
positions: torch.Tensor,
|
|
kv_caches: List[torch.Tensor],
|
|
attn_metadata: AttentionMetadata,
|
|
intermediate_tensors: Optional[IntermediateTensors] = None,
|
|
inputs_embeds: Optional[torch.Tensor] = None,
|
|
visual_token_mask: Optional[torch.Tensor] = None,
|
|
) -> Union[torch.Tensor, IntermediateTensors]:
|
|
if get_pp_group().is_first_rank:
|
|
if inputs_embeds is not None:
|
|
hidden_states = inputs_embeds
|
|
else:
|
|
hidden_states = self.tok_embeddings(input_ids)
|
|
residual = None
|
|
else:
|
|
assert intermediate_tensors is not None
|
|
hidden_states = intermediate_tensors["hidden_states"]
|
|
residual = intermediate_tensors["residual"]
|
|
for i in range(self.start_layer, self.end_layer):
|
|
layer = self.layers[i]
|
|
hidden_states, residual = layer(
|
|
positions,
|
|
hidden_states,
|
|
kv_caches[i - self.start_layer],
|
|
attn_metadata,
|
|
residual,
|
|
visual_token_mask=visual_token_mask,
|
|
)
|
|
if not get_pp_group().is_last_rank:
|
|
return IntermediateTensors({
|
|
"hidden_states": hidden_states,
|
|
"residual": residual
|
|
})
|
|
hidden_states, _ = self.norm(hidden_states, residual)
|
|
return hidden_states
|
|
|
|
|
|
class InternLM2VEForCausalLM(InternLM2ForCausalLM):
|
|
|
|
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
|
|
super().__init__(vllm_config=vllm_config,
|
|
prefix=prefix,
|
|
model_type=InternLM2VEModel)
|