mirror of
https://git.datalinker.icu/vllm-project/vllm.git
synced 2025-12-18 04:35:03 +08:00
- **Add SPDX license headers to python source files**
- **Check for SPDX headers using pre-commit**
commit 9d7ef44c3cfb72ca4c32e1c677d99259d10d4745
Author: Russell Bryant <rbryant@redhat.com>
Date: Fri Jan 31 14:18:24 2025 -0500
Add SPDX license headers to python source files
This commit adds SPDX license headers to python source files as
recommended to
the project by the Linux Foundation. These headers provide a concise way
that is
both human and machine readable for communicating license information
for each
source file. It helps avoid any ambiguity about the license of the code
and can
also be easily used by tools to help manage license compliance.
The Linux Foundation runs license scans against the codebase to help
ensure
we are in compliance with the licenses of the code we use, including
dependencies. Having these headers in place helps that tool do its job.
More information can be found on the SPDX site:
- https://spdx.dev/learn/handling-license-info/
Signed-off-by: Russell Bryant <rbryant@redhat.com>
commit 5a1cf1cb3b80759131c73f6a9dddebccac039dea
Author: Russell Bryant <rbryant@redhat.com>
Date: Fri Jan 31 14:36:32 2025 -0500
Check for SPDX headers using pre-commit
Signed-off-by: Russell Bryant <rbryant@redhat.com>
---------
Signed-off-by: Russell Bryant <rbryant@redhat.com>
135 lines
5.7 KiB
Python
135 lines
5.7 KiB
Python
# SPDX-License-Identifier: Apache-2.0
|
|
|
|
# Copyright 2023 The vLLM team.
|
|
# Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
|
|
#
|
|
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
|
|
# and OPT implementations in this library. It has been modified from its
|
|
# original forms to accommodate minor architectural differences compared
|
|
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
from typing import Iterable, Set, Tuple
|
|
|
|
import torch
|
|
|
|
from vllm.config import VllmConfig
|
|
from vllm.model_executor.model_loader.weight_utils import default_weight_loader
|
|
from vllm.model_executor.models.llama import LlamaForCausalLM, LlamaModel
|
|
|
|
from .utils import (AutoWeightsLoader, PPMissingLayer, WeightsMapper,
|
|
is_pp_missing_parameter)
|
|
|
|
|
|
class TeleChat2Model(LlamaModel):
|
|
|
|
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
|
|
# 1. Initialize the LlamaModel with bias
|
|
vllm_config.model_config.hf_config.bias = True
|
|
vllm_config.model_config.hf_config.mlp_bias = True
|
|
super().__init__(vllm_config=vllm_config, prefix=prefix)
|
|
# 2. Remove the bias from the qkv_proj and gate_up_proj based on config
|
|
# Telechat2's gate_up_proj and qkv_proj don't have bias
|
|
# see: https://github.com/vllm-project/vllm/pull/10311#issuecomment-2490297566
|
|
for layer in self.layers:
|
|
if not isinstance(layer, PPMissingLayer):
|
|
layer.self_attn.qkv_proj.bias = None
|
|
layer.self_attn.qkv_proj.skip_bias_add = True
|
|
layer.mlp.gate_up_proj.bias = None
|
|
layer.mlp.gate_up_proj.skip_bias_add = True
|
|
|
|
def load_weights(self, weights: Iterable[Tuple[str,
|
|
torch.Tensor]]) -> Set[str]:
|
|
stacked_params_mapping = [
|
|
('gate_up_proj', 'gate_proj', 0),
|
|
('gate_up_proj', 'up_proj', 1),
|
|
]
|
|
params_dict = dict(self.named_parameters())
|
|
loaded_params: Set[str] = set()
|
|
total_num_heads = self.config.n_head
|
|
head_dim = self.config.hidden_size // total_num_heads
|
|
for name, loaded_weight in weights:
|
|
if "self_attn.key_value" in name:
|
|
k_weight = []
|
|
v_weight = []
|
|
for i in range(total_num_heads):
|
|
start = i * head_dim * 2
|
|
k_weight.append(loaded_weight[start:start + head_dim, :])
|
|
v_weight.append(loaded_weight[start + head_dim:start +
|
|
2 * head_dim:])
|
|
k_weight = torch.cat(k_weight, dim=0)
|
|
v_weight = torch.cat(v_weight, dim=0)
|
|
name = name.replace("key_value", "qkv_proj")
|
|
if is_pp_missing_parameter(name, self):
|
|
continue
|
|
param = params_dict[name]
|
|
weight_loader = param.weight_loader
|
|
weight_loader(param, k_weight, "k")
|
|
weight_loader(param, v_weight, "v")
|
|
elif "query" in name:
|
|
name = name.replace("query", "qkv_proj")
|
|
if is_pp_missing_parameter(name, self):
|
|
continue
|
|
param = params_dict[name]
|
|
weight_loader = param.weight_loader
|
|
weight_loader(param, loaded_weight, "q")
|
|
else:
|
|
for param_name, weight_name, shard_id in stacked_params_mapping:
|
|
if weight_name not in name:
|
|
continue
|
|
name = name.replace(weight_name, param_name)
|
|
if is_pp_missing_parameter(name, self):
|
|
continue
|
|
param = params_dict[name]
|
|
weight_loader = param.weight_loader
|
|
weight_loader(param, loaded_weight, shard_id)
|
|
break
|
|
else:
|
|
if is_pp_missing_parameter(name, self):
|
|
continue
|
|
param = params_dict[name]
|
|
weight_loader = getattr(param, "weight_loader",
|
|
default_weight_loader)
|
|
weight_loader(param, loaded_weight)
|
|
loaded_params.add(name)
|
|
return loaded_params
|
|
|
|
|
|
class TeleChat2ForCausalLM(LlamaForCausalLM):
|
|
|
|
hf_to_vllm_mapper = WeightsMapper(
|
|
orig_to_new_prefix={
|
|
"transformer.": "model.",
|
|
},
|
|
orig_to_new_substr={
|
|
".h.": ".layers.",
|
|
".self_attention.": ".self_attn.",
|
|
".word_embeddings.": ".embed_tokens.",
|
|
".dense.": ".o_proj.",
|
|
".ln_f.": ".norm.",
|
|
},
|
|
)
|
|
|
|
def _init_model(self, vllm_config: VllmConfig, prefix: str = ""):
|
|
return TeleChat2Model(vllm_config=vllm_config, prefix=prefix)
|
|
|
|
def load_weights(self, weights: Iterable[Tuple[str,
|
|
torch.Tensor]]) -> Set[str]:
|
|
|
|
loader = AutoWeightsLoader(
|
|
self,
|
|
skip_prefixes=(["lm_head."]
|
|
if self.config.tie_word_embeddings else None),
|
|
)
|
|
return loader.load_weights(weights, mapper=self.hf_to_vllm_mapper)
|