vllm/vllm/spec_decode/mqa_scorer.py
Russell Bryant e489ad7a21
[Misc] Add SPDX-License-Identifier headers to python source files (#12628)
- **Add SPDX license headers to python source files**
- **Check for SPDX headers using pre-commit**

commit 9d7ef44c3cfb72ca4c32e1c677d99259d10d4745
Author: Russell Bryant <rbryant@redhat.com>
Date:   Fri Jan 31 14:18:24 2025 -0500

    Add SPDX license headers to python source files
    
This commit adds SPDX license headers to python source files as
recommended to
the project by the Linux Foundation. These headers provide a concise way
that is
both human and machine readable for communicating license information
for each
source file. It helps avoid any ambiguity about the license of the code
and can
    also be easily used by tools to help manage license compliance.
    
The Linux Foundation runs license scans against the codebase to help
ensure
    we are in compliance with the licenses of the code we use, including
dependencies. Having these headers in place helps that tool do its job.
    
    More information can be found on the SPDX site:
    
    - https://spdx.dev/learn/handling-license-info/
    
    Signed-off-by: Russell Bryant <rbryant@redhat.com>

commit 5a1cf1cb3b80759131c73f6a9dddebccac039dea
Author: Russell Bryant <rbryant@redhat.com>
Date:   Fri Jan 31 14:36:32 2025 -0500

    Check for SPDX headers using pre-commit
    
    Signed-off-by: Russell Bryant <rbryant@redhat.com>

---------

Signed-off-by: Russell Bryant <rbryant@redhat.com>
2025-02-02 11:58:18 -08:00

160 lines
7.3 KiB
Python

# SPDX-License-Identifier: Apache-2.0
from vllm.sequence import (ExecuteModelRequest, SequenceData,
SequenceGroupMetadata, get_all_seq_ids)
from vllm.spec_decode.interfaces import (SpeculativeProposals,
SpeculativeScorer, SpeculativeScores)
SeqId = int
TargetSeqId = int
class MQAScorer(SpeculativeScorer):
def score_proposals(
self,
execute_model_req: ExecuteModelRequest,
proposals: SpeculativeProposals,
) -> SpeculativeScores:
target_seq_group_metadata_list = []
target_seq_id_start = max(
get_all_seq_ids(execute_model_req.seq_group_metadata_list)) + 1
all_proposal_tokens = proposals.proposal_token_ids.tolist()
all_proposal_lengths = proposals.proposal_lens.tolist()
for i, seq_group_metadata in enumerate(
execute_model_req.seq_group_metadata_list):
if all_proposal_lengths[i] == 0:
# Keep prompt seqs untouched (keep computed_tokens for chunks).
target_seq_group_metadata_list.append(seq_group_metadata)
continue
seq_data_dict = seq_group_metadata.seq_data
assert len(seq_data_dict) == 1
seq_id = next(iter(seq_data_dict.keys()))
seq_data: SequenceData = seq_data_dict[seq_id]
prompt_token_ids = seq_data.get_prompt_token_ids()
output_token_ids = seq_data.get_output_token_ids()
proposal_token_ids = all_proposal_tokens[
i][:all_proposal_lengths[i]]
new_output_token_ids = [*output_token_ids, *proposal_token_ids]
target_seq_id = target_seq_id_start + i
new_seq_data = SequenceData.from_seqs(
prompt_token_ids=prompt_token_ids,
output_token_ids=new_output_token_ids,
)
new_seq_data.update_num_computed_tokens(
len(prompt_token_ids) + len(output_token_ids) - 1)
# Ensure that the new decode sequence has at least one token.
assert len(output_token_ids) >= 1
new_seq_data_dict = {target_seq_id: new_seq_data}
new_seq_group_metadata = SequenceGroupMetadata(
request_id=seq_group_metadata.request_id,
is_prompt=seq_group_metadata.is_prompt,
seq_data=new_seq_data_dict,
sampling_params=seq_group_metadata.sampling_params,
block_tables={
target_seq_id: seq_group_metadata.block_tables[seq_id],
},
lora_request=None,
)
target_seq_group_metadata_list.append(new_seq_group_metadata)
target_sampler_output = self._scorer_worker.execute_model(
execute_model_req=execute_model_req.clone(
seq_group_metadata_list=target_seq_group_metadata_list))
target_sampler_output = target_sampler_output[0]
k = execute_model_req.num_lookahead_slots
bs = len(execute_model_req.seq_group_metadata_list)
target_token_ids = target_sampler_output.sampled_token_ids
target_probs = target_sampler_output.sampled_token_probs
target_logprobs = target_sampler_output.logprobs
prompt_logprobs = None
# If all requests have the same number of query tokens, we can avoid
# the for loop to build output for better performance.
if min(all_proposal_lengths) == k:
# Regular decodes only.
assert all(not sg.is_prompt
for sg in target_seq_group_metadata_list
if sg.is_prompt)
bs, _ = proposals.proposal_token_ids.shape
all_tokens = target_token_ids.reshape(bs, k + 1)
all_probs = target_probs.reshape(bs, k + 1, self._vocab_size)
all_logprobs = target_logprobs.reshape(bs, k + 1, self._vocab_size)
else:
# We either have decodes with different lens or prefill+decodes.
all_tokens = target_token_ids.new_full(size=(bs, k + 1),
fill_value=-1)
all_probs = target_probs.new_zeros(*all_tokens.shape,
self._vocab_size)
all_logprobs = target_logprobs.new_full(size=all_probs.shape,
fill_value=-float("inf"))
target_token_ids = target_token_ids.flatten()
# When prompt logprobs is enabled, lens of returned tensors go from
# n_sampled (requests with do_sample=True) to n_prompt+n_prefills.
# We adjust stride accordingly to get the generated tokens and
# their probs, but pass on prompt_logprobs as is, since it may be
# that n_prompts >> K.
has_prompt_log = any((sg.sampling_params.prompt_logprobs
and sg.sampling_params.prompt_logprobs > 0)
for sg in target_seq_group_metadata_list)
# TODO (NickLucche) we should surface `disable_logprobs` as to not
# break abstraction to get its value.
if (not self._scorer_worker.model_runner.disable_logprobs\
and has_prompt_log):
prompt_logprobs = [
o.prompt_logprobs for o in target_sampler_output.outputs
]
# Split loop into prefill|decode for readability.
start_loc, i = 0, 0
while i < len(target_seq_group_metadata_list
) and target_seq_group_metadata_list[i].is_prompt:
seq_meta = target_seq_group_metadata_list[i]
end_loc = start_loc
if has_prompt_log:
end_loc += seq_meta.token_chunk_size
elif seq_meta.do_sample:
end_loc += 1
# Skip chunks with no output tokens.
if seq_meta.do_sample:
# Get sampled token (last position in chunk) and its prob.
all_tokens[i, 0] = target_token_ids[end_loc - 1]
all_probs[i, 0] = target_probs[end_loc - 1]
all_logprobs[i, 0] = target_logprobs[end_loc - 1]
i += 1
start_loc = end_loc
# Decodes.
while i < len(target_seq_group_metadata_list):
proposed_len, seq_meta = all_proposal_lengths[
i], target_seq_group_metadata_list[i]
output_len = proposed_len + 1
end_loc = start_loc + output_len
all_tokens[
i, :output_len] = target_token_ids[start_loc:end_loc]
all_probs[i, :output_len] = target_probs[start_loc:end_loc]
all_logprobs[
i, :output_len] = target_logprobs[start_loc:end_loc]
start_loc = end_loc
i += 1
hidden_states = None
if target_sampler_output.hidden_states is not None:
hidden_states = target_sampler_output.hidden_states.reshape(
bs, (k + 1), -1)
return SpeculativeScores(probs=all_probs,
token_ids=all_tokens,
logprobs=all_logprobs,
hidden_states=hidden_states,
prompt_logprobs=prompt_logprobs)