mirror of
https://git.datalinker.icu/vllm-project/vllm.git
synced 2025-12-27 07:41:49 +08:00
- **Add SPDX license headers to python source files**
- **Check for SPDX headers using pre-commit**
commit 9d7ef44c3cfb72ca4c32e1c677d99259d10d4745
Author: Russell Bryant <rbryant@redhat.com>
Date: Fri Jan 31 14:18:24 2025 -0500
Add SPDX license headers to python source files
This commit adds SPDX license headers to python source files as
recommended to
the project by the Linux Foundation. These headers provide a concise way
that is
both human and machine readable for communicating license information
for each
source file. It helps avoid any ambiguity about the license of the code
and can
also be easily used by tools to help manage license compliance.
The Linux Foundation runs license scans against the codebase to help
ensure
we are in compliance with the licenses of the code we use, including
dependencies. Having these headers in place helps that tool do its job.
More information can be found on the SPDX site:
- https://spdx.dev/learn/handling-license-info/
Signed-off-by: Russell Bryant <rbryant@redhat.com>
commit 5a1cf1cb3b80759131c73f6a9dddebccac039dea
Author: Russell Bryant <rbryant@redhat.com>
Date: Fri Jan 31 14:36:32 2025 -0500
Check for SPDX headers using pre-commit
Signed-off-by: Russell Bryant <rbryant@redhat.com>
---------
Signed-off-by: Russell Bryant <rbryant@redhat.com>
160 lines
7.3 KiB
Python
160 lines
7.3 KiB
Python
# SPDX-License-Identifier: Apache-2.0
|
|
|
|
from vllm.sequence import (ExecuteModelRequest, SequenceData,
|
|
SequenceGroupMetadata, get_all_seq_ids)
|
|
from vllm.spec_decode.interfaces import (SpeculativeProposals,
|
|
SpeculativeScorer, SpeculativeScores)
|
|
|
|
SeqId = int
|
|
TargetSeqId = int
|
|
|
|
|
|
class MQAScorer(SpeculativeScorer):
|
|
|
|
def score_proposals(
|
|
self,
|
|
execute_model_req: ExecuteModelRequest,
|
|
proposals: SpeculativeProposals,
|
|
) -> SpeculativeScores:
|
|
target_seq_group_metadata_list = []
|
|
target_seq_id_start = max(
|
|
get_all_seq_ids(execute_model_req.seq_group_metadata_list)) + 1
|
|
all_proposal_tokens = proposals.proposal_token_ids.tolist()
|
|
all_proposal_lengths = proposals.proposal_lens.tolist()
|
|
for i, seq_group_metadata in enumerate(
|
|
execute_model_req.seq_group_metadata_list):
|
|
if all_proposal_lengths[i] == 0:
|
|
# Keep prompt seqs untouched (keep computed_tokens for chunks).
|
|
target_seq_group_metadata_list.append(seq_group_metadata)
|
|
continue
|
|
|
|
seq_data_dict = seq_group_metadata.seq_data
|
|
assert len(seq_data_dict) == 1
|
|
seq_id = next(iter(seq_data_dict.keys()))
|
|
|
|
seq_data: SequenceData = seq_data_dict[seq_id]
|
|
prompt_token_ids = seq_data.get_prompt_token_ids()
|
|
output_token_ids = seq_data.get_output_token_ids()
|
|
proposal_token_ids = all_proposal_tokens[
|
|
i][:all_proposal_lengths[i]]
|
|
new_output_token_ids = [*output_token_ids, *proposal_token_ids]
|
|
|
|
target_seq_id = target_seq_id_start + i
|
|
new_seq_data = SequenceData.from_seqs(
|
|
prompt_token_ids=prompt_token_ids,
|
|
output_token_ids=new_output_token_ids,
|
|
)
|
|
new_seq_data.update_num_computed_tokens(
|
|
len(prompt_token_ids) + len(output_token_ids) - 1)
|
|
|
|
# Ensure that the new decode sequence has at least one token.
|
|
assert len(output_token_ids) >= 1
|
|
new_seq_data_dict = {target_seq_id: new_seq_data}
|
|
|
|
new_seq_group_metadata = SequenceGroupMetadata(
|
|
request_id=seq_group_metadata.request_id,
|
|
is_prompt=seq_group_metadata.is_prompt,
|
|
seq_data=new_seq_data_dict,
|
|
sampling_params=seq_group_metadata.sampling_params,
|
|
block_tables={
|
|
target_seq_id: seq_group_metadata.block_tables[seq_id],
|
|
},
|
|
lora_request=None,
|
|
)
|
|
target_seq_group_metadata_list.append(new_seq_group_metadata)
|
|
|
|
target_sampler_output = self._scorer_worker.execute_model(
|
|
execute_model_req=execute_model_req.clone(
|
|
seq_group_metadata_list=target_seq_group_metadata_list))
|
|
|
|
target_sampler_output = target_sampler_output[0]
|
|
|
|
k = execute_model_req.num_lookahead_slots
|
|
bs = len(execute_model_req.seq_group_metadata_list)
|
|
target_token_ids = target_sampler_output.sampled_token_ids
|
|
target_probs = target_sampler_output.sampled_token_probs
|
|
target_logprobs = target_sampler_output.logprobs
|
|
prompt_logprobs = None
|
|
|
|
# If all requests have the same number of query tokens, we can avoid
|
|
# the for loop to build output for better performance.
|
|
if min(all_proposal_lengths) == k:
|
|
# Regular decodes only.
|
|
assert all(not sg.is_prompt
|
|
for sg in target_seq_group_metadata_list
|
|
if sg.is_prompt)
|
|
bs, _ = proposals.proposal_token_ids.shape
|
|
all_tokens = target_token_ids.reshape(bs, k + 1)
|
|
all_probs = target_probs.reshape(bs, k + 1, self._vocab_size)
|
|
all_logprobs = target_logprobs.reshape(bs, k + 1, self._vocab_size)
|
|
else:
|
|
# We either have decodes with different lens or prefill+decodes.
|
|
all_tokens = target_token_ids.new_full(size=(bs, k + 1),
|
|
fill_value=-1)
|
|
all_probs = target_probs.new_zeros(*all_tokens.shape,
|
|
self._vocab_size)
|
|
all_logprobs = target_logprobs.new_full(size=all_probs.shape,
|
|
fill_value=-float("inf"))
|
|
target_token_ids = target_token_ids.flatten()
|
|
|
|
# When prompt logprobs is enabled, lens of returned tensors go from
|
|
# n_sampled (requests with do_sample=True) to n_prompt+n_prefills.
|
|
# We adjust stride accordingly to get the generated tokens and
|
|
# their probs, but pass on prompt_logprobs as is, since it may be
|
|
# that n_prompts >> K.
|
|
has_prompt_log = any((sg.sampling_params.prompt_logprobs
|
|
and sg.sampling_params.prompt_logprobs > 0)
|
|
for sg in target_seq_group_metadata_list)
|
|
# TODO (NickLucche) we should surface `disable_logprobs` as to not
|
|
# break abstraction to get its value.
|
|
if (not self._scorer_worker.model_runner.disable_logprobs\
|
|
and has_prompt_log):
|
|
prompt_logprobs = [
|
|
o.prompt_logprobs for o in target_sampler_output.outputs
|
|
]
|
|
|
|
# Split loop into prefill|decode for readability.
|
|
start_loc, i = 0, 0
|
|
while i < len(target_seq_group_metadata_list
|
|
) and target_seq_group_metadata_list[i].is_prompt:
|
|
seq_meta = target_seq_group_metadata_list[i]
|
|
end_loc = start_loc
|
|
if has_prompt_log:
|
|
end_loc += seq_meta.token_chunk_size
|
|
elif seq_meta.do_sample:
|
|
end_loc += 1
|
|
|
|
# Skip chunks with no output tokens.
|
|
if seq_meta.do_sample:
|
|
# Get sampled token (last position in chunk) and its prob.
|
|
all_tokens[i, 0] = target_token_ids[end_loc - 1]
|
|
all_probs[i, 0] = target_probs[end_loc - 1]
|
|
all_logprobs[i, 0] = target_logprobs[end_loc - 1]
|
|
|
|
i += 1
|
|
start_loc = end_loc
|
|
# Decodes.
|
|
while i < len(target_seq_group_metadata_list):
|
|
proposed_len, seq_meta = all_proposal_lengths[
|
|
i], target_seq_group_metadata_list[i]
|
|
output_len = proposed_len + 1
|
|
end_loc = start_loc + output_len
|
|
all_tokens[
|
|
i, :output_len] = target_token_ids[start_loc:end_loc]
|
|
all_probs[i, :output_len] = target_probs[start_loc:end_loc]
|
|
all_logprobs[
|
|
i, :output_len] = target_logprobs[start_loc:end_loc]
|
|
start_loc = end_loc
|
|
i += 1
|
|
|
|
hidden_states = None
|
|
if target_sampler_output.hidden_states is not None:
|
|
hidden_states = target_sampler_output.hidden_states.reshape(
|
|
bs, (k + 1), -1)
|
|
|
|
return SpeculativeScores(probs=all_probs,
|
|
token_ids=all_tokens,
|
|
logprobs=all_logprobs,
|
|
hidden_states=hidden_states,
|
|
prompt_logprobs=prompt_logprobs)
|