mirror of
https://git.datalinker.icu/vllm-project/vllm.git
synced 2025-12-10 03:35:17 +08:00
853 lines
33 KiB
Plaintext
853 lines
33 KiB
Plaintext
/*
|
|
* Modified by Neural Magic
|
|
* Copyright (C) Marlin.2024 Elias Frantar
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
/*
|
|
* Adapted from https://github.com/IST-DASLab/marlin
|
|
*/
|
|
|
|
#ifndef MARLIN_NAMESPACE_NAME
|
|
#define MARLIN_NAMESPACE_NAME marlin
|
|
#endif
|
|
|
|
#include "kernel.h"
|
|
#include "core/registration.h"
|
|
|
|
#define STATIC_ASSERT_SCALAR_TYPE_VALID(scalar_t) \
|
|
static_assert(std::is_same<scalar_t, half>::value || \
|
|
std::is_same<scalar_t, nv_bfloat16>::value, \
|
|
"only float16 and bfloat16 is supported");
|
|
|
|
namespace marlin {
|
|
|
|
__global__ void MarlinDefault(MARLIN_KERNEL_PARAMS){};
|
|
|
|
using MarlinFuncPtr = void (*)(MARLIN_KERNEL_PARAMS);
|
|
|
|
#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ < 800
|
|
|
|
__global__ void permute_cols_kernel(int4 const* __restrict__ a_int4_ptr,
|
|
int const* __restrict__ perm_int_ptr,
|
|
int4* __restrict__ out_int4_ptr, int size_m,
|
|
int size_k, int lda, int block_rows) {}
|
|
|
|
} // namespace marlin
|
|
|
|
torch::Tensor gptq_marlin_gemm(
|
|
torch::Tensor& a, std::optional<torch::Tensor> c_or_none,
|
|
torch::Tensor& b_q_weight, torch::Tensor& b_scales,
|
|
std::optional<torch::Tensor> const& b_zeros_or_none,
|
|
std::optional<torch::Tensor> const& g_idx_or_none,
|
|
std::optional<torch::Tensor> const& perm_or_none, torch::Tensor& workspace,
|
|
vllm::ScalarTypeId const& b_q_type_id, int64_t size_m, int64_t size_n,
|
|
int64_t size_k, bool is_k_full, bool use_atomic_add, bool use_fp32_reduce,
|
|
bool is_zp_float) {
|
|
TORCH_CHECK_NOT_IMPLEMENTED(false,
|
|
"marlin_gemm(..) requires CUDA_ARCH >= 8.0");
|
|
return torch::empty({1, 1});
|
|
}
|
|
|
|
#else
|
|
|
|
// For a given "a" of size [M,K] performs a permutation of the K columns based
|
|
// on the given "perm" indices.
|
|
__global__ void permute_cols_kernel(int4 const* __restrict__ a_int4_ptr,
|
|
int const* __restrict__ perm_int_ptr,
|
|
int4* __restrict__ out_int4_ptr, int size_m,
|
|
int size_k, int lda, int block_rows) {
|
|
auto start_row = block_rows * blockIdx.x;
|
|
int finish_row = start_row + block_rows;
|
|
if (finish_row > size_m) {
|
|
finish_row = size_m;
|
|
}
|
|
int cur_block_rows = finish_row - start_row;
|
|
|
|
int input_row_stride = lda * sizeof(half) / 16;
|
|
int output_row_stride = size_k * sizeof(half) / 16;
|
|
|
|
auto permute_row = [&](int row) {
|
|
int iters = size_k / default_threads;
|
|
int rest = size_k % default_threads;
|
|
|
|
int input_offset = row * input_row_stride;
|
|
int output_offset = row * output_row_stride;
|
|
|
|
half const* a_row_half =
|
|
reinterpret_cast<half const*>(a_int4_ptr + input_offset);
|
|
half* out_half = reinterpret_cast<half*>(out_int4_ptr + output_offset);
|
|
|
|
int base_k = 0;
|
|
|
|
for (int i = 0; i < iters; i++) {
|
|
auto cur_k = base_k + threadIdx.x;
|
|
int src_pos = perm_int_ptr[cur_k];
|
|
|
|
out_half[cur_k] = a_row_half[src_pos];
|
|
|
|
base_k += default_threads;
|
|
}
|
|
|
|
if (rest) {
|
|
if (threadIdx.x < rest) {
|
|
auto cur_k = base_k + threadIdx.x;
|
|
int src_pos = perm_int_ptr[cur_k];
|
|
|
|
out_half[cur_k] = a_row_half[src_pos];
|
|
}
|
|
}
|
|
};
|
|
|
|
for (int i = 0; i < cur_block_rows; i++) {
|
|
int cur_row = start_row + i;
|
|
if (cur_row < size_m) {
|
|
permute_row(cur_row);
|
|
}
|
|
}
|
|
}
|
|
|
|
typedef struct {
|
|
int thread_k;
|
|
int thread_n;
|
|
int num_threads;
|
|
} thread_config_t;
|
|
|
|
thread_config_t small_batch_thread_configs[] = {
|
|
// Ordered by priority
|
|
|
|
// thread_k, thread_n, num_threads
|
|
{128, 128, 256},
|
|
{64, 128, 128},
|
|
{128, 64, 128}};
|
|
|
|
thread_config_t large_batch_thread_configs[] = {
|
|
// Ordered by priority
|
|
|
|
// thread_k, thread_n, num_threads
|
|
{64, 256, 256},
|
|
{64, 128, 128},
|
|
{128, 64, 128}};
|
|
|
|
typedef struct {
|
|
int blocks_per_sm;
|
|
thread_config_t tb_cfg;
|
|
} exec_config_t;
|
|
|
|
int get_scales_cache_size(thread_config_t const& th_config, int prob_m,
|
|
int prob_n, int prob_k, int num_bits, int group_size,
|
|
bool has_act_order, bool is_k_full) {
|
|
bool cache_scales_chunk = has_act_order && !is_k_full;
|
|
|
|
int tb_n = th_config.thread_n;
|
|
int tb_k = th_config.thread_k;
|
|
|
|
// Get max scale groups per thread-block
|
|
int tb_groups;
|
|
if (group_size == -1) {
|
|
tb_groups = 1;
|
|
} else if (group_size == 0) {
|
|
tb_groups = div_ceil(tb_k, 32); // Worst case is 32 group size
|
|
} else {
|
|
tb_groups = div_ceil(tb_k, group_size);
|
|
}
|
|
|
|
if (cache_scales_chunk) {
|
|
int load_groups =
|
|
tb_groups * pipe_stages * 2; // Chunk size is 2x pipeline over dim K
|
|
load_groups = max(load_groups, 32); // We load at least 32 scale groups
|
|
return load_groups * tb_n * 2;
|
|
} else {
|
|
int tb_scales = tb_groups * tb_n * 2;
|
|
|
|
return tb_scales * pipe_stages;
|
|
}
|
|
}
|
|
|
|
int get_kernel_cache_size(thread_config_t const& th_config, int thread_m_blocks,
|
|
int prob_m, int prob_n, int prob_k, int num_bits,
|
|
int group_size, bool has_act_order, bool is_k_full,
|
|
int has_zp, int is_zp_float) {
|
|
int pack_factor = 32 / num_bits;
|
|
|
|
// Get B size
|
|
int tb_k = th_config.thread_k;
|
|
int tb_n = th_config.thread_n;
|
|
int tb_m = thread_m_blocks * 16;
|
|
int sh_a_size = pipe_stages * (tb_m * tb_k) * 2;
|
|
int sh_b_size = pipe_stages * (tb_k * tb_n / pack_factor) * 4;
|
|
int sh_red_size = tb_m * (tb_n + 8);
|
|
int sh_s_size =
|
|
get_scales_cache_size(th_config, prob_m, prob_n, prob_k, num_bits,
|
|
group_size, has_act_order, is_k_full);
|
|
int sh_g_idx_size = has_act_order && !is_k_full ? pipe_stages * tb_k / 4 : 0;
|
|
int sh_zp_size = 0;
|
|
if (has_zp) {
|
|
if (is_zp_float)
|
|
sh_zp_size = sh_s_size;
|
|
else if (num_bits == 4)
|
|
sh_zp_size = sh_s_size / 4;
|
|
else if (num_bits == 8)
|
|
sh_zp_size = sh_s_size / 2;
|
|
}
|
|
|
|
int total_size = max(sh_b_size, sh_red_size) + sh_a_size + sh_s_size +
|
|
sh_zp_size + sh_g_idx_size;
|
|
|
|
return total_size;
|
|
}
|
|
|
|
bool is_valid_config(thread_config_t const& th_config, int thread_m_blocks,
|
|
int prob_m, int prob_n, int prob_k, int num_bits,
|
|
int group_size, bool has_act_order, bool is_k_full,
|
|
int has_zp, int is_zp_float, int max_shared_mem) {
|
|
// Sanity
|
|
if (th_config.thread_k == -1 || th_config.thread_n == -1 ||
|
|
th_config.num_threads == -1) {
|
|
return false;
|
|
}
|
|
|
|
// Verify K/N are divisible by thread K/N
|
|
if (prob_k % th_config.thread_k != 0 || prob_n % th_config.thread_n != 0) {
|
|
return false;
|
|
}
|
|
|
|
// Verify min for thread K/N
|
|
if (th_config.thread_n < min_thread_n || th_config.thread_k < min_thread_k) {
|
|
return false;
|
|
}
|
|
|
|
// num_threads must be at least 128 (= 4 warps)
|
|
if (th_config.num_threads < 128) {
|
|
return false;
|
|
}
|
|
|
|
// Check that pipeline fits into cache
|
|
int cache_size = get_kernel_cache_size(
|
|
th_config, thread_m_blocks, prob_m, prob_n, prob_k, num_bits, group_size,
|
|
has_act_order, is_k_full, has_zp, is_zp_float);
|
|
return cache_size <= max_shared_mem;
|
|
}
|
|
|
|
#define _GET_IF(W_TYPE, THREAD_M_BLOCKS, THREAD_N_BLOCKS, THREAD_K_BLOCKS, \
|
|
M_BLOCK_SIZE_8, GROUP_BLOCKS, NUM_THREADS, IS_ZP_FLOAT) \
|
|
else if (q_type == W_TYPE && thread_m_blocks == THREAD_M_BLOCKS && \
|
|
thread_n_blocks == THREAD_N_BLOCKS && \
|
|
thread_k_blocks == THREAD_K_BLOCKS && \
|
|
m_block_size_8 == M_BLOCK_SIZE_8 && \
|
|
group_blocks == GROUP_BLOCKS && num_threads == NUM_THREADS && \
|
|
is_zp_float == IS_ZP_FLOAT) { \
|
|
kernel = Marlin<scalar_t, W_TYPE.id(), NUM_THREADS, THREAD_M_BLOCKS, \
|
|
THREAD_N_BLOCKS, THREAD_K_BLOCKS, M_BLOCK_SIZE_8, \
|
|
pipe_stages, GROUP_BLOCKS, IS_ZP_FLOAT>; \
|
|
}
|
|
|
|
// COMMON: cases for (group_blocks in [-1, 2, 4, 8] and is_zp_float == false)
|
|
// this is the most common cases
|
|
// BIGGROUP: cases for big group size (group_blocks in [-1, 8])
|
|
// FZP: cases for float-zero-point (is_zp_float = true)
|
|
// ACT: cases for act order case (group_blocks == 0)
|
|
#define COMMON_GET_IF_M1(W_TYPE, N_BLOCKS, K_BLOCKS, NUM_THREADS) \
|
|
_GET_IF(W_TYPE, 1, N_BLOCKS, K_BLOCKS, true, -1, NUM_THREADS, false) \
|
|
_GET_IF(W_TYPE, 1, N_BLOCKS, K_BLOCKS, true, 2, NUM_THREADS, false) \
|
|
_GET_IF(W_TYPE, 1, N_BLOCKS, K_BLOCKS, true, 4, NUM_THREADS, false) \
|
|
_GET_IF(W_TYPE, 1, N_BLOCKS, K_BLOCKS, true, 8, NUM_THREADS, false) \
|
|
_GET_IF(W_TYPE, 1, N_BLOCKS, K_BLOCKS, false, -1, NUM_THREADS, false) \
|
|
_GET_IF(W_TYPE, 1, N_BLOCKS, K_BLOCKS, false, 2, NUM_THREADS, false) \
|
|
_GET_IF(W_TYPE, 1, N_BLOCKS, K_BLOCKS, false, 4, NUM_THREADS, false) \
|
|
_GET_IF(W_TYPE, 1, N_BLOCKS, K_BLOCKS, false, 8, NUM_THREADS, false)
|
|
|
|
#define COMMON_GET_IF_M234(W_TYPE, N_BLOCKS, K_BLOCKS, NUM_THREADS) \
|
|
_GET_IF(W_TYPE, 2, N_BLOCKS, K_BLOCKS, false, -1, NUM_THREADS, false) \
|
|
_GET_IF(W_TYPE, 2, N_BLOCKS, K_BLOCKS, false, 2, NUM_THREADS, false) \
|
|
_GET_IF(W_TYPE, 2, N_BLOCKS, K_BLOCKS, false, 4, NUM_THREADS, false) \
|
|
_GET_IF(W_TYPE, 2, N_BLOCKS, K_BLOCKS, false, 8, NUM_THREADS, false) \
|
|
\
|
|
_GET_IF(W_TYPE, 3, N_BLOCKS, K_BLOCKS, false, -1, NUM_THREADS, false) \
|
|
_GET_IF(W_TYPE, 3, N_BLOCKS, K_BLOCKS, false, 2, NUM_THREADS, false) \
|
|
_GET_IF(W_TYPE, 3, N_BLOCKS, K_BLOCKS, false, 4, NUM_THREADS, false) \
|
|
_GET_IF(W_TYPE, 3, N_BLOCKS, K_BLOCKS, false, 8, NUM_THREADS, false) \
|
|
\
|
|
_GET_IF(W_TYPE, 4, N_BLOCKS, K_BLOCKS, false, -1, NUM_THREADS, false) \
|
|
_GET_IF(W_TYPE, 4, N_BLOCKS, K_BLOCKS, false, 2, NUM_THREADS, false) \
|
|
_GET_IF(W_TYPE, 4, N_BLOCKS, K_BLOCKS, false, 4, NUM_THREADS, false) \
|
|
_GET_IF(W_TYPE, 4, N_BLOCKS, K_BLOCKS, false, 8, NUM_THREADS, false)
|
|
|
|
#define COMMON_GET_IF(W_TYPE) \
|
|
COMMON_GET_IF_M1(W_TYPE, 8, 8, 256) \
|
|
COMMON_GET_IF_M1(W_TYPE, 8, 4, 128) \
|
|
COMMON_GET_IF_M1(W_TYPE, 4, 8, 128) \
|
|
COMMON_GET_IF_M234(W_TYPE, 16, 4, 256) \
|
|
COMMON_GET_IF_M234(W_TYPE, 8, 4, 128) \
|
|
COMMON_GET_IF_M234(W_TYPE, 4, 8, 128)
|
|
|
|
#define BIGGROUP_GET_IF_M1(W_TYPE, N_BLOCKS, K_BLOCKS, NUM_THREADS) \
|
|
_GET_IF(W_TYPE, 1, N_BLOCKS, K_BLOCKS, true, -1, NUM_THREADS, false) \
|
|
_GET_IF(W_TYPE, 1, N_BLOCKS, K_BLOCKS, true, 8, NUM_THREADS, false) \
|
|
_GET_IF(W_TYPE, 1, N_BLOCKS, K_BLOCKS, false, -1, NUM_THREADS, false) \
|
|
_GET_IF(W_TYPE, 1, N_BLOCKS, K_BLOCKS, false, 8, NUM_THREADS, false)
|
|
|
|
#define BIGGROUP_GET_IF_M234(W_TYPE, N_BLOCKS, K_BLOCKS, NUM_THREADS) \
|
|
_GET_IF(W_TYPE, 2, N_BLOCKS, K_BLOCKS, false, -1, NUM_THREADS, false) \
|
|
_GET_IF(W_TYPE, 2, N_BLOCKS, K_BLOCKS, false, 8, NUM_THREADS, false) \
|
|
_GET_IF(W_TYPE, 3, N_BLOCKS, K_BLOCKS, false, -1, NUM_THREADS, false) \
|
|
_GET_IF(W_TYPE, 3, N_BLOCKS, K_BLOCKS, false, 8, NUM_THREADS, false) \
|
|
_GET_IF(W_TYPE, 4, N_BLOCKS, K_BLOCKS, false, -1, NUM_THREADS, false) \
|
|
_GET_IF(W_TYPE, 4, N_BLOCKS, K_BLOCKS, false, 8, NUM_THREADS, false)
|
|
|
|
#define BIGGROUP_GET_IF(W_TYPE) \
|
|
BIGGROUP_GET_IF_M1(W_TYPE, 8, 8, 256) \
|
|
BIGGROUP_GET_IF_M1(W_TYPE, 8, 4, 128) \
|
|
BIGGROUP_GET_IF_M1(W_TYPE, 4, 8, 128) \
|
|
BIGGROUP_GET_IF_M234(W_TYPE, 16, 4, 256) \
|
|
BIGGROUP_GET_IF_M234(W_TYPE, 8, 4, 128) \
|
|
BIGGROUP_GET_IF_M234(W_TYPE, 4, 8, 128)
|
|
|
|
// We currently have 4-bit models only with group_blocks == 4
|
|
#define FZP_GET_IF_M1(W_TYPE, N_BLOCKS, K_BLOCKS, NUM_THREADS) \
|
|
_GET_IF(W_TYPE, 1, N_BLOCKS, K_BLOCKS, true, 4, NUM_THREADS, true) \
|
|
_GET_IF(W_TYPE, 1, N_BLOCKS, K_BLOCKS, false, 4, NUM_THREADS, true)
|
|
|
|
#define FZP_GET_IF_M234(W_TYPE, N_BLOCKS, K_BLOCKS, NUM_THREADS) \
|
|
_GET_IF(W_TYPE, 2, N_BLOCKS, K_BLOCKS, false, 4, NUM_THREADS, true) \
|
|
_GET_IF(W_TYPE, 3, N_BLOCKS, K_BLOCKS, false, 4, NUM_THREADS, true) \
|
|
_GET_IF(W_TYPE, 4, N_BLOCKS, K_BLOCKS, false, 4, NUM_THREADS, true)
|
|
|
|
#define FZP_GET_IF(W_TYPE) \
|
|
FZP_GET_IF_M1(W_TYPE, 8, 8, 256) \
|
|
FZP_GET_IF_M1(W_TYPE, 8, 4, 128) \
|
|
FZP_GET_IF_M1(W_TYPE, 4, 8, 128) \
|
|
FZP_GET_IF_M234(W_TYPE, 16, 4, 256) \
|
|
FZP_GET_IF_M234(W_TYPE, 8, 4, 128) \
|
|
FZP_GET_IF_M234(W_TYPE, 4, 8, 128)
|
|
|
|
// We currently have 4-bit models only with group_blocks == 4
|
|
#define ACT_GET_IF_M1(W_TYPE, N_BLOCKS, K_BLOCKS, NUM_THREADS) \
|
|
_GET_IF(W_TYPE, 1, N_BLOCKS, K_BLOCKS, true, 0, NUM_THREADS, false) \
|
|
_GET_IF(W_TYPE, 1, N_BLOCKS, K_BLOCKS, false, 0, NUM_THREADS, false)
|
|
|
|
#define ACT_GET_IF_M234(W_TYPE, N_BLOCKS, K_BLOCKS, NUM_THREADS) \
|
|
_GET_IF(W_TYPE, 2, N_BLOCKS, K_BLOCKS, false, 0, NUM_THREADS, false) \
|
|
_GET_IF(W_TYPE, 3, N_BLOCKS, K_BLOCKS, false, 0, NUM_THREADS, false) \
|
|
_GET_IF(W_TYPE, 4, N_BLOCKS, K_BLOCKS, false, 0, NUM_THREADS, false)
|
|
|
|
#define ACT_GET_IF(W_TYPE) \
|
|
ACT_GET_IF_M1(W_TYPE, 8, 8, 256) \
|
|
ACT_GET_IF_M1(W_TYPE, 8, 4, 128) \
|
|
ACT_GET_IF_M1(W_TYPE, 4, 8, 128) \
|
|
ACT_GET_IF_M234(W_TYPE, 16, 4, 256) \
|
|
ACT_GET_IF_M234(W_TYPE, 8, 4, 128) \
|
|
ACT_GET_IF_M234(W_TYPE, 4, 8, 128)
|
|
|
|
template <typename scalar_t>
|
|
MarlinFuncPtr get_marlin_kernel(const vllm::ScalarType q_type,
|
|
int thread_m_blocks, int thread_n_blocks,
|
|
int thread_k_blocks, bool m_block_size_8,
|
|
bool has_act_order, bool has_zp,
|
|
int group_blocks, int num_threads,
|
|
bool is_zp_float) {
|
|
int num_bits = q_type.size_bits();
|
|
auto kernel = MarlinDefault;
|
|
if (false) {
|
|
}
|
|
|
|
COMMON_GET_IF(vllm::kU4)
|
|
COMMON_GET_IF(vllm::kU4B8)
|
|
COMMON_GET_IF(vllm::kU8B128)
|
|
|
|
BIGGROUP_GET_IF(vllm::kFE4M3fn)
|
|
|
|
ACT_GET_IF(vllm::kU4B8)
|
|
ACT_GET_IF(vllm::kU8B128)
|
|
|
|
if (std::is_same<scalar_t, half>::value) {
|
|
if (false) {
|
|
}
|
|
FZP_GET_IF(vllm::kU4)
|
|
}
|
|
|
|
return kernel;
|
|
}
|
|
|
|
template <typename scalar_t>
|
|
exec_config_t determine_exec_config(const vllm::ScalarType& q_type, int prob_m,
|
|
int prob_n, int prob_k, int thread_m_blocks,
|
|
bool m_block_size_8, int num_bits,
|
|
int group_size, bool has_act_order,
|
|
bool is_k_full, bool has_zp,
|
|
bool is_zp_float, int max_shared_mem,
|
|
int sms) {
|
|
exec_config_t exec_cfg = exec_config_t{1, thread_config_t{-1, -1, -1}};
|
|
thread_config_t* thread_configs = thread_m_blocks > 1
|
|
? large_batch_thread_configs
|
|
: small_batch_thread_configs;
|
|
int thread_configs_size =
|
|
thread_m_blocks > 1
|
|
? sizeof(large_batch_thread_configs) / sizeof(thread_config_t)
|
|
: sizeof(small_batch_thread_configs) / sizeof(thread_config_t);
|
|
|
|
for (int i = 0; i < thread_configs_size; i++) {
|
|
thread_config_t th_config = thread_configs[i];
|
|
|
|
if (!is_valid_config(th_config, thread_m_blocks, prob_m, prob_n, prob_k,
|
|
num_bits, group_size, has_act_order, is_k_full, has_zp,
|
|
is_zp_float, max_shared_mem)) {
|
|
continue;
|
|
}
|
|
|
|
int cache_size = get_kernel_cache_size(
|
|
th_config, thread_m_blocks, prob_m, prob_n, prob_k, num_bits,
|
|
group_size, has_act_order, is_k_full, has_zp, is_zp_float);
|
|
|
|
int group_blocks = 0;
|
|
if (!has_act_order) {
|
|
group_blocks = group_size == -1 ? -1 : group_size / 16;
|
|
}
|
|
|
|
auto kernel = get_marlin_kernel<scalar_t>(
|
|
q_type, thread_m_blocks, th_config.thread_n / 16,
|
|
th_config.thread_k / 16, m_block_size_8, has_act_order, has_zp,
|
|
group_blocks, th_config.num_threads, is_zp_float);
|
|
|
|
if (kernel == MarlinDefault) continue;
|
|
|
|
// int m_tiles = div_ceil(prob_m, thread_m_blocks * 16);
|
|
// int n_tiles = prob_n / th_config.thread_n;
|
|
// int k_tiles = prob_k / th_config.thread_k;
|
|
|
|
return {1, th_config};
|
|
}
|
|
|
|
return exec_cfg;
|
|
}
|
|
|
|
template <typename scalar_t>
|
|
void marlin_mm(const void* A, const void* B, void* C, void* C_tmp, void* s,
|
|
void* zp, void* g_idx, void* perm, void* a_tmp, int prob_m,
|
|
int prob_n, int prob_k, int lda, void* workspace,
|
|
vllm::ScalarType const& q_type, bool has_act_order,
|
|
bool is_k_full, bool has_zp, int num_groups, int group_size,
|
|
int dev, cudaStream_t stream, int thread_k_init,
|
|
int thread_n_init, int sms, bool use_atomic_add,
|
|
bool use_fp32_reduce, bool is_zp_float) {
|
|
if (has_zp) {
|
|
TORCH_CHECK(
|
|
q_type == vllm::kU4 || q_type == vllm::kU8,
|
|
"q_type must be u4 or u8 when has_zp = True. Got = ", q_type.str());
|
|
} else {
|
|
TORCH_CHECK(q_type == vllm::kU4B8 || q_type == vllm::kU8B128 ||
|
|
q_type == vllm::kFE4M3fn,
|
|
"q_type must be uint4b8, uint8b128 or float8_e4m3fn when "
|
|
"has_zp = False. Got = ",
|
|
q_type.str());
|
|
}
|
|
|
|
TORCH_CHECK(prob_m > 0 && prob_n > 0 && prob_k > 0, "Invalid MNK = [", prob_m,
|
|
", ", prob_n, ", ", prob_k, "]");
|
|
|
|
int group_blocks = 0;
|
|
if (has_act_order) {
|
|
if (is_k_full) {
|
|
TORCH_CHECK(group_size != -1);
|
|
group_blocks = group_size / 16;
|
|
TORCH_CHECK(prob_k % group_blocks == 0, "prob_k = ", prob_k,
|
|
" is not divisible by group_blocks = ", group_blocks);
|
|
} else {
|
|
TORCH_CHECK(group_size == 0);
|
|
group_blocks = 0;
|
|
}
|
|
} else {
|
|
if (group_size == -1) {
|
|
group_blocks = -1;
|
|
} else {
|
|
group_blocks = group_size / 16;
|
|
TORCH_CHECK(prob_k % group_blocks == 0, "prob_k = ", prob_k,
|
|
" is not divisible by group_blocks = ", group_blocks);
|
|
}
|
|
}
|
|
|
|
int num_bits = q_type.size_bits();
|
|
const int4* A_ptr = (const int4*)A;
|
|
const int4* B_ptr = (const int4*)B;
|
|
int4* C_ptr = (int4*)C;
|
|
int4* C_tmp_ptr = (int4*)C_tmp;
|
|
const int4* s_ptr = (const int4*)s;
|
|
const int4* zp_ptr = (const int4*)zp;
|
|
const int* g_idx_ptr = (const int*)g_idx;
|
|
const int* perm_ptr = (const int*)perm;
|
|
int4* a_tmp_ptr = (int4*)a_tmp;
|
|
|
|
int* locks = (int*)workspace;
|
|
|
|
if (has_act_order) {
|
|
// Permute A columns
|
|
int block_rows = div_ceil(prob_m, sms);
|
|
// avoid ">>>" being formatted to "> > >"
|
|
// clang-format off
|
|
permute_cols_kernel<<<sms, default_threads, 0, stream>>>(
|
|
A_ptr, perm_ptr, a_tmp_ptr, prob_m, prob_k, lda, block_rows);
|
|
// clang-format on
|
|
A_ptr = a_tmp_ptr;
|
|
lda = prob_k;
|
|
|
|
// If we have a full K, then we can run the non-act-order version of Marlin
|
|
// (since the weight rows are reordered by increasing group ids, and by
|
|
// having a full K, we have full original groups)
|
|
if (is_k_full) has_act_order = false;
|
|
}
|
|
|
|
int max_shared_mem = 0;
|
|
cudaDeviceGetAttribute(&max_shared_mem,
|
|
cudaDevAttrMaxSharedMemoryPerBlockOptin, dev);
|
|
TORCH_CHECK(max_shared_mem > 0);
|
|
|
|
int max_par = 16;
|
|
if (prob_n <= 4096) max_par = 16 * 8;
|
|
int max_shared_mem_new = max_shared_mem;
|
|
int rest_m = prob_m;
|
|
int max_thread_m_blocks = 4;
|
|
while (rest_m) {
|
|
int par_count = rest_m / (max_thread_m_blocks * 16);
|
|
if (par_count > max_par) par_count = max_par;
|
|
int prob_m_split =
|
|
par_count > 0 ? (par_count * (max_thread_m_blocks * 16)) : rest_m;
|
|
|
|
int thread_k = thread_k_init;
|
|
int thread_n = thread_n_init;
|
|
|
|
int thread_m_blocks = min(div_ceil(prob_m_split, 16), max_thread_m_blocks);
|
|
int m_block_size_8 = prob_m_split <= 8;
|
|
|
|
// Set thread config
|
|
exec_config_t exec_cfg;
|
|
thread_config_t thread_tfg;
|
|
if (thread_k != -1 && thread_n != -1) {
|
|
thread_tfg = thread_config_t{thread_k, thread_n, default_threads};
|
|
exec_cfg = exec_config_t{1, thread_tfg};
|
|
TORCH_CHECK(prob_n % thread_n == 0, "prob_n = ", prob_n,
|
|
" is not divisible by thread_n = ", thread_n);
|
|
TORCH_CHECK(prob_k % thread_k == 0, "prob_k = ", prob_k,
|
|
" is not divisible by thread_k = ", thread_k);
|
|
} else {
|
|
// Auto config
|
|
exec_cfg = determine_exec_config<scalar_t>(
|
|
q_type, prob_m_split, prob_n, prob_k, thread_m_blocks, m_block_size_8,
|
|
num_bits, group_size, has_act_order, is_k_full, has_zp, is_zp_float,
|
|
max_shared_mem, sms);
|
|
thread_tfg = exec_cfg.tb_cfg;
|
|
if (thread_tfg.thread_k == -1 && max_thread_m_blocks > 1) {
|
|
max_thread_m_blocks--;
|
|
continue;
|
|
}
|
|
}
|
|
|
|
int num_threads = thread_tfg.num_threads;
|
|
thread_k = thread_tfg.thread_k;
|
|
thread_n = thread_tfg.thread_n;
|
|
int blocks = sms * exec_cfg.blocks_per_sm;
|
|
if (exec_cfg.blocks_per_sm > 1)
|
|
max_shared_mem_new = max_shared_mem / exec_cfg.blocks_per_sm - 1024;
|
|
|
|
int thread_k_blocks = thread_k / 16;
|
|
int thread_n_blocks = thread_n / 16;
|
|
|
|
TORCH_CHECK(
|
|
is_valid_config(thread_tfg, thread_m_blocks, prob_m_split, prob_n,
|
|
prob_k, num_bits, group_size, has_act_order, is_k_full,
|
|
has_zp, is_zp_float, max_shared_mem_new),
|
|
"Invalid thread config: thread_m_blocks = ", thread_m_blocks,
|
|
", thread_k = ", thread_tfg.thread_k,
|
|
", thread_n = ", thread_tfg.thread_n,
|
|
", num_threads = ", thread_tfg.num_threads, " for MKN = [", prob_m,
|
|
", ", prob_k, ", ", prob_n, "] and num_bits = ", num_bits,
|
|
", prob_m_split = ", prob_m_split, ", group_size = ", group_size,
|
|
", has_act_order = ", has_act_order, ", is_k_full = ", is_k_full,
|
|
", has_zp = ", has_zp, ", is_zp_float = ", is_zp_float,
|
|
", max_shared_mem_new = ", max_shared_mem_new);
|
|
|
|
auto kernel = get_marlin_kernel<scalar_t>(
|
|
q_type, thread_m_blocks, thread_n_blocks, thread_k_blocks,
|
|
m_block_size_8, has_act_order, has_zp, group_blocks, num_threads,
|
|
is_zp_float);
|
|
|
|
if (kernel == MarlinDefault) {
|
|
TORCH_CHECK(false, "Unsupported shapes: MNK = [", prob_m, ", ", prob_n,
|
|
", ", prob_k, "]", ", has_act_order = ", has_act_order,
|
|
", num_groups = ", num_groups, ", group_size = ", group_size,
|
|
", prob_m_split = ", prob_m_split,
|
|
", thread_m_blocks = ", thread_m_blocks,
|
|
", thread_n_blocks = ", thread_n_blocks,
|
|
", thread_k_blocks = ", thread_k_blocks,
|
|
", num_threads = ", num_threads, ", num_bits = ", num_bits);
|
|
}
|
|
|
|
cudaFuncSetAttribute(kernel, cudaFuncAttributeMaxDynamicSharedMemorySize,
|
|
max_shared_mem_new);
|
|
|
|
bool part_use_atomic_add =
|
|
use_atomic_add && div_ceil(prob_m_split, 64) * prob_n <= 2048;
|
|
|
|
// avoid ">>>" being formatted to "> > >"
|
|
// clang-format off
|
|
kernel<<<blocks, num_threads, max_shared_mem_new, stream>>>(
|
|
A_ptr, B_ptr, C_ptr, C_tmp_ptr, s_ptr, zp_ptr, g_idx_ptr, num_groups,
|
|
prob_m_split, prob_n, prob_k, lda, locks, part_use_atomic_add,
|
|
use_fp32_reduce, max_shared_mem_new);
|
|
// clang-format on
|
|
|
|
A_ptr += prob_m_split * (lda / 8);
|
|
C_ptr += prob_m_split * (prob_n / 8);
|
|
rest_m -= prob_m_split;
|
|
}
|
|
}
|
|
|
|
} // namespace marlin
|
|
|
|
torch::Tensor gptq_marlin_gemm(
|
|
torch::Tensor& a, std::optional<torch::Tensor> c_or_none,
|
|
torch::Tensor& b_q_weight, torch::Tensor& b_scales,
|
|
std::optional<torch::Tensor> const& b_zeros_or_none,
|
|
std::optional<torch::Tensor> const& g_idx_or_none,
|
|
std::optional<torch::Tensor> const& perm_or_none, torch::Tensor& workspace,
|
|
vllm::ScalarTypeId const& b_q_type_id, int64_t size_m, int64_t size_n,
|
|
int64_t size_k, bool is_k_full, bool use_atomic_add, bool use_fp32_reduce,
|
|
bool is_zp_float) {
|
|
vllm::ScalarType const b_q_type = vllm::ScalarType::from_id(b_q_type_id);
|
|
int pack_factor = 32 / b_q_type.size_bits();
|
|
|
|
// Verify A
|
|
TORCH_CHECK(a.size(0) == size_m, "Shape mismatch: a.size(0) = ", a.size(0),
|
|
", size_m = ", size_m);
|
|
TORCH_CHECK(a.size(1) == size_k, "Shape mismatch: a.size(1) = ", a.size(1),
|
|
", size_k = ", size_k);
|
|
|
|
// Verify B
|
|
TORCH_CHECK(
|
|
size_k % MARLIN_NAMESPACE_NAME::tile_size == 0, "size_k = ", size_k,
|
|
" is not divisible by tile_size = ", MARLIN_NAMESPACE_NAME::tile_size);
|
|
TORCH_CHECK((size_k / MARLIN_NAMESPACE_NAME::tile_size) == b_q_weight.size(0),
|
|
"Shape mismatch: b_q_weight.size(0) = ", b_q_weight.size(0),
|
|
", size_k = ", size_k,
|
|
", tile_size = ", MARLIN_NAMESPACE_NAME::tile_size);
|
|
TORCH_CHECK(
|
|
b_q_weight.size(1) % MARLIN_NAMESPACE_NAME::tile_size == 0,
|
|
"b_q_weight.size(1) = ", b_q_weight.size(1),
|
|
" is not divisible by tile_size = ", MARLIN_NAMESPACE_NAME::tile_size);
|
|
int actual_size_n =
|
|
(b_q_weight.size(1) / MARLIN_NAMESPACE_NAME::tile_size) * pack_factor;
|
|
TORCH_CHECK(size_n == actual_size_n, "size_n = ", size_n,
|
|
", actual_size_n = ", actual_size_n);
|
|
|
|
// Verify device and strides
|
|
TORCH_CHECK(a.device().is_cuda(), "A is not on GPU");
|
|
TORCH_CHECK(a.stride(1) == 1, "A.stride(1) is not 1");
|
|
// We use int4 (16 bytes) to load A, so A must aligned to 16 bytes
|
|
TORCH_CHECK(a.stride(0) % 8 == 0, "A.stride(0) must divisible by 8");
|
|
TORCH_CHECK(((uint64_t)a.data_ptr()) % 16 == 0, "A must aligned to 16 bytes");
|
|
|
|
TORCH_CHECK(b_q_weight.device().is_cuda(), "b_q_weight is not on GPU");
|
|
TORCH_CHECK(b_q_weight.is_contiguous(), "b_q_weight is not contiguous");
|
|
|
|
TORCH_CHECK(b_scales.device().is_cuda(), "b_scales is not on GPU");
|
|
TORCH_CHECK(b_scales.is_contiguous(), "b_scales is not contiguous");
|
|
|
|
// thread_k: `k` size of a thread_tile in `weights` (can usually be left as
|
|
// auto -1)
|
|
int thread_k = -1;
|
|
// thread_n: `n` size of a thread_tile in `weights` (can usually be left as
|
|
// auto -1)
|
|
int thread_n = -1;
|
|
// sms: number of SMs to use for the kernel
|
|
int sms = -1;
|
|
cudaDeviceGetAttribute(&sms, cudaDevAttrMultiProcessorCount, a.get_device());
|
|
|
|
// Alloc buffers
|
|
const at::cuda::OptionalCUDAGuard device_guard(device_of(a));
|
|
auto options = torch::TensorOptions().dtype(a.dtype()).device(a.device());
|
|
torch::Tensor c;
|
|
if (c_or_none.has_value()) {
|
|
c = c_or_none.value();
|
|
TORCH_CHECK(c.device().is_cuda(), "c is not on GPU");
|
|
TORCH_CHECK(c.is_contiguous(), "c is not contiguous");
|
|
TORCH_CHECK(c.size(0) == size_m, "Shape mismatch: c.size(0) = ", c.size(0),
|
|
", size_m = ", size_m);
|
|
TORCH_CHECK(c.size(1) == size_n, "Shape mismatch: c.size(1) = ", c.size(1),
|
|
", size_n = ", size_n);
|
|
} else {
|
|
c = torch::empty({size_m, size_n}, options);
|
|
}
|
|
if (size_m == 0) return c;
|
|
|
|
// Alloc C tmp buffer that is going to be used for the global reduce
|
|
torch::Tensor c_tmp;
|
|
auto options_fp32 =
|
|
torch::TensorOptions().dtype(at::kFloat).device(a.device());
|
|
if (use_fp32_reduce) {
|
|
int max_m_block_size = (size_m + 16 - 1) / 16 * 16;
|
|
max_m_block_size = min(max_m_block_size, 64);
|
|
int max_c_tmp_size =
|
|
sms * max_m_block_size * MARLIN_NAMESPACE_NAME::max_thread_n;
|
|
c_tmp = torch::empty({max_c_tmp_size}, options_fp32);
|
|
} else {
|
|
c_tmp = torch::empty({0}, options_fp32);
|
|
}
|
|
|
|
// Detect groupsize and act_order
|
|
int num_groups = -1;
|
|
int group_size = -1;
|
|
|
|
int rank = b_scales.sizes().size();
|
|
TORCH_CHECK(rank == 2, "b_scales rank = ", rank, " is not 2");
|
|
TORCH_CHECK(b_scales.size(1) == size_n, "b_scales dim 1 = ", b_scales.size(1),
|
|
" is not size_n = ", size_n);
|
|
num_groups = b_scales.size(0);
|
|
|
|
torch::Tensor g_idx, perm, a_tmp;
|
|
if (g_idx_or_none.has_value() && perm_or_none.has_value()) {
|
|
g_idx = g_idx_or_none.value();
|
|
perm = perm_or_none.value();
|
|
|
|
TORCH_CHECK(g_idx.device().is_cuda(), "g_idx is not on GPU");
|
|
TORCH_CHECK(g_idx.is_contiguous(), "g_idx is not contiguous");
|
|
TORCH_CHECK(perm.device().is_cuda(), "perm is not on GPU");
|
|
TORCH_CHECK(perm.is_contiguous(), "perm is not contiguous");
|
|
|
|
// Verify g_idx and perm
|
|
TORCH_CHECK((g_idx.size(-1) == 0 && perm.size(-1) == 0) ||
|
|
(g_idx.size(-1) == size_k && perm.size(-1) == size_k),
|
|
"Unexpected g_idx.size(-1) = ", g_idx.size(-1),
|
|
" and perm.size(-1) = ", perm.size(-1),
|
|
", where size_k = ", size_k);
|
|
} else {
|
|
g_idx = torch::empty({0}, options);
|
|
perm = torch::empty({0}, options);
|
|
a_tmp = torch::empty({0}, options);
|
|
}
|
|
bool has_act_order = g_idx.size(-1) > 0 && perm.size(-1) > 0;
|
|
|
|
if (has_act_order) {
|
|
a_tmp = torch::empty({size_m, size_k}, options);
|
|
if (is_k_full) {
|
|
TORCH_CHECK(num_groups > 1, "For act_order, num_groups must be > 1");
|
|
TORCH_CHECK(size_k % num_groups == 0, "size_k = ", size_k,
|
|
", is not divisible by num_groups = ", num_groups);
|
|
group_size = size_k / num_groups;
|
|
} else {
|
|
group_size = 0;
|
|
}
|
|
|
|
} else {
|
|
a_tmp = torch::empty({0}, options);
|
|
if (num_groups > 1) {
|
|
TORCH_CHECK(
|
|
size_k % num_groups == 0, "size_k = ", size_k,
|
|
", is not divisible by b_scales.size(0) = ", b_scales.size(0));
|
|
group_size = size_k / num_groups;
|
|
} else {
|
|
group_size = -1;
|
|
}
|
|
}
|
|
|
|
torch::Tensor b_zeros;
|
|
if (b_zeros_or_none.has_value()) {
|
|
b_zeros = b_zeros_or_none.value();
|
|
TORCH_CHECK(b_zeros.device().is_cuda(), "b_zeros is not on GPU");
|
|
TORCH_CHECK(b_zeros.is_contiguous(), "b_zeros is not contiguous");
|
|
} else {
|
|
b_zeros = torch::empty({0}, options);
|
|
}
|
|
bool has_zp = b_zeros.size(-1) > 0;
|
|
if (has_zp) {
|
|
TORCH_CHECK(
|
|
b_q_type == vllm::kU4 || b_q_type == vllm::kU8,
|
|
"b_q_type must be u4 or u8 when has_zp = True. Got = ", b_q_type.str());
|
|
} else {
|
|
TORCH_CHECK(b_q_type == vllm::kU4B8 || b_q_type == vllm::kU8B128 ||
|
|
b_q_type == vllm::kFE4M3fn,
|
|
"b_q_type must be uint4b8, uint8b128 or float8_e4m3fn when "
|
|
"has_zp = False. Got = ",
|
|
b_q_type.str());
|
|
}
|
|
|
|
if (has_zp && is_zp_float) {
|
|
TORCH_CHECK(a.scalar_type() == at::ScalarType::Half,
|
|
"Computation type must be float16 (half) when using float zero "
|
|
"points.");
|
|
}
|
|
|
|
// Verify b_zeros
|
|
if (has_zp) {
|
|
int rank = b_zeros.sizes().size();
|
|
TORCH_CHECK(rank == 2, "b_zeros rank = ", rank, " is not 2");
|
|
if (is_zp_float) {
|
|
TORCH_CHECK(b_zeros.size(1) == size_n,
|
|
"b_zeros dim 1 = ", b_zeros.size(1),
|
|
" is not size_n = ", size_n);
|
|
TORCH_CHECK(num_groups == b_zeros.size(0),
|
|
"b_zeros dim 0 = ", b_zeros.size(0),
|
|
" is not num_groups = ", num_groups);
|
|
TORCH_CHECK(num_groups != -1, "num_groups must be != -1");
|
|
} else {
|
|
TORCH_CHECK(b_zeros.size(0) == num_groups,
|
|
"b_zeros dim 0 = ", b_zeros.size(0),
|
|
" is not num_groups = ", num_groups);
|
|
TORCH_CHECK(b_zeros.size(1) == size_n / pack_factor,
|
|
"b_zeros dim 1 = ", b_zeros.size(1),
|
|
" is not size_n / pack_factor = ", size_n / pack_factor);
|
|
}
|
|
}
|
|
|
|
// Verify workspace size
|
|
TORCH_CHECK(size_n % MARLIN_NAMESPACE_NAME::min_thread_n == 0,
|
|
"size_n = ", size_n, ", is not divisible by min_thread_n = ",
|
|
MARLIN_NAMESPACE_NAME::min_thread_n);
|
|
|
|
int min_workspace_size = sms;
|
|
TORCH_CHECK(workspace.numel() >= min_workspace_size,
|
|
"workspace.numel = ", workspace.numel(),
|
|
" is below min_workspace_size = ", min_workspace_size);
|
|
|
|
int dev = a.get_device();
|
|
if (a.scalar_type() == at::ScalarType::Half) {
|
|
marlin::marlin_mm<half>(
|
|
a.data_ptr<at::Half>(), b_q_weight.data_ptr(), c.data_ptr<at::Half>(),
|
|
c_tmp.data_ptr<float>(), b_scales.data_ptr<at::Half>(),
|
|
b_zeros.data_ptr(), g_idx.data_ptr(), perm.data_ptr(),
|
|
a_tmp.data_ptr<at::Half>(), size_m, size_n, size_k, a.stride(0),
|
|
workspace.data_ptr(), b_q_type, has_act_order, is_k_full, has_zp,
|
|
num_groups, group_size, dev, at::cuda::getCurrentCUDAStream(dev),
|
|
thread_k, thread_n, sms, use_atomic_add, use_fp32_reduce, is_zp_float);
|
|
} else if (a.scalar_type() == at::ScalarType::BFloat16) {
|
|
marlin::marlin_mm<nv_bfloat16>(
|
|
a.data_ptr<at::BFloat16>(), b_q_weight.data_ptr(),
|
|
c.data_ptr<at::BFloat16>(), c_tmp.data_ptr<float>(),
|
|
b_scales.data_ptr<at::BFloat16>(), b_zeros.data_ptr(), g_idx.data_ptr(),
|
|
perm.data_ptr(), a_tmp.data_ptr<at::BFloat16>(), size_m, size_n, size_k,
|
|
a.stride(0), workspace.data_ptr(), b_q_type, has_act_order, is_k_full,
|
|
has_zp, num_groups, group_size, dev,
|
|
at::cuda::getCurrentCUDAStream(dev), thread_k, thread_n, sms,
|
|
use_atomic_add, use_fp32_reduce, is_zp_float);
|
|
} else {
|
|
TORCH_CHECK(false, "gpt_marlin_gemm only supports bfloat16 and float16");
|
|
}
|
|
|
|
return c;
|
|
}
|
|
|
|
#endif
|
|
|
|
TORCH_LIBRARY_IMPL_EXPAND(TORCH_EXTENSION_NAME, CUDA, m) {
|
|
m.impl("gptq_marlin_gemm", &gptq_marlin_gemm);
|
|
}
|