mirror of
https://git.datalinker.icu/vllm-project/vllm.git
synced 2025-12-10 01:05:01 +08:00
490 lines
16 KiB
Python
490 lines
16 KiB
Python
# SPDX-License-Identifier: Apache-2.0
|
|
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
|
|
|
|
|
import flashinfer
|
|
import pytest
|
|
import torch
|
|
|
|
from vllm.platforms import current_platform
|
|
|
|
NUM_HEADS = [(32, 8), (6, 1)]
|
|
HEAD_SIZES = [128, 256]
|
|
BLOCK_SIZES = [16, 32]
|
|
DTYPES = [torch.bfloat16]
|
|
NUM_BLOCKS = 32768 # Large enough to test overflow in index calculation.
|
|
SOFT_CAPS = [None, 30.0]
|
|
SLIDING_WINDOWS = [None, 64]
|
|
|
|
|
|
def ref_paged_attn(
|
|
query: torch.Tensor,
|
|
key_cache: torch.Tensor,
|
|
value_cache: torch.Tensor,
|
|
query_lens: list[int],
|
|
kv_lens: list[int],
|
|
block_tables: torch.Tensor,
|
|
scale: float,
|
|
sliding_window: int | None = None,
|
|
soft_cap: float | None = None,
|
|
) -> torch.Tensor:
|
|
num_seqs = len(query_lens)
|
|
block_tables = block_tables.cpu().numpy()
|
|
_, block_size, num_kv_heads, head_size = key_cache.shape
|
|
|
|
outputs: list[torch.Tensor] = []
|
|
start_idx = 0
|
|
for i in range(num_seqs):
|
|
query_len = query_lens[i]
|
|
kv_len = kv_lens[i]
|
|
q = query[start_idx : start_idx + query_len]
|
|
q *= scale
|
|
|
|
num_kv_blocks = (kv_len + block_size - 1) // block_size
|
|
block_indices = block_tables[i, :num_kv_blocks]
|
|
|
|
k = key_cache[block_indices].view(-1, num_kv_heads, head_size)
|
|
k = k[:kv_len]
|
|
v = value_cache[block_indices].view(-1, num_kv_heads, head_size)
|
|
v = v[:kv_len]
|
|
|
|
if q.shape[1] != k.shape[1]:
|
|
k = torch.repeat_interleave(k, q.shape[1] // k.shape[1], dim=1)
|
|
v = torch.repeat_interleave(v, q.shape[1] // v.shape[1], dim=1)
|
|
attn = torch.einsum("qhd,khd->hqk", q, k).float()
|
|
empty_mask = torch.ones(query_len, kv_len)
|
|
mask = torch.triu(empty_mask, diagonal=kv_len - query_len + 1).bool()
|
|
if sliding_window is not None:
|
|
sliding_window_mask = (
|
|
torch.triu(
|
|
empty_mask, diagonal=kv_len - (query_len + sliding_window) + 1
|
|
)
|
|
.bool()
|
|
.logical_not()
|
|
)
|
|
mask |= sliding_window_mask
|
|
if soft_cap is not None:
|
|
attn = soft_cap * torch.tanh(attn / soft_cap)
|
|
attn.masked_fill_(mask, float("-inf"))
|
|
attn = torch.softmax(attn, dim=-1).to(v.dtype)
|
|
out = torch.einsum("hqk,khd->qhd", attn, v)
|
|
|
|
outputs.append(out)
|
|
start_idx += query_len
|
|
|
|
return torch.cat(outputs, dim=0)
|
|
|
|
|
|
@pytest.mark.parametrize("kv_lens", [[1328, 18, 463], [1, 54, 293, 70]])
|
|
@pytest.mark.parametrize("num_heads", NUM_HEADS)
|
|
@pytest.mark.parametrize("head_size", HEAD_SIZES)
|
|
@pytest.mark.parametrize("block_size", BLOCK_SIZES)
|
|
@pytest.mark.parametrize("dtype", DTYPES)
|
|
@pytest.mark.parametrize("soft_cap", SOFT_CAPS)
|
|
@pytest.mark.parametrize("sliding_window", SLIDING_WINDOWS)
|
|
@torch.inference_mode
|
|
def test_flashinfer_decode_with_paged_kv(
|
|
kv_lens: list[int],
|
|
num_heads: tuple[int, int],
|
|
head_size: int,
|
|
dtype: torch.dtype,
|
|
block_size: int,
|
|
soft_cap: float | None,
|
|
sliding_window: int | None,
|
|
) -> None:
|
|
torch.set_default_device("cuda")
|
|
current_platform.seed_everything(0)
|
|
num_seqs = len(kv_lens)
|
|
num_query_heads = num_heads[0]
|
|
num_kv_heads = num_heads[1]
|
|
assert num_query_heads % num_kv_heads == 0
|
|
max_kv_len = max(kv_lens)
|
|
scale = head_size**-0.5
|
|
|
|
query = torch.randn(num_seqs, num_query_heads, head_size, dtype=dtype)
|
|
|
|
key_value_cache = torch.randn(
|
|
NUM_BLOCKS, 2, block_size, num_kv_heads, head_size, dtype=dtype
|
|
)
|
|
key_cache = key_value_cache[:, 0, :, :, :].squeeze(1)
|
|
value_cache = key_value_cache[:, 1, :, :, :].squeeze(1)
|
|
|
|
max_num_blocks_per_seq = (max_kv_len + block_size - 1) // block_size
|
|
block_tables = torch.randint(
|
|
0, NUM_BLOCKS, (num_seqs, max_num_blocks_per_seq), dtype=torch.int32
|
|
)
|
|
|
|
kv_indptr = [0]
|
|
kv_indices = []
|
|
kv_last_page_lens = []
|
|
for i in range(num_seqs):
|
|
seq_len = kv_lens[i]
|
|
assert seq_len > 0
|
|
num_blocks = (seq_len + block_size - 1) // block_size
|
|
kv_indices.extend(block_tables[i, :num_blocks])
|
|
kv_indptr.append(kv_indptr[-1] + num_blocks)
|
|
kv_last_page_len = seq_len % block_size
|
|
if kv_last_page_len == 0:
|
|
kv_last_page_len = block_size
|
|
kv_last_page_lens.append(kv_last_page_len)
|
|
|
|
kv_indptr = torch.tensor(kv_indptr, dtype=torch.int32)
|
|
kv_indices = torch.tensor(kv_indices, dtype=torch.int32)
|
|
kv_last_page_lens = torch.tensor(kv_last_page_lens, dtype=torch.int32)
|
|
|
|
workspace_buffer = torch.empty(128 * 1024 * 1024, dtype=torch.int8)
|
|
wrapper = flashinfer.BatchDecodeWithPagedKVCacheWrapper(
|
|
workspace_buffer, "NHD", use_tensor_cores=True
|
|
)
|
|
wrapper.plan(
|
|
kv_indptr,
|
|
kv_indices,
|
|
kv_last_page_lens,
|
|
num_query_heads,
|
|
num_kv_heads,
|
|
head_size,
|
|
block_size,
|
|
"NONE",
|
|
window_left=sliding_window - 1 if sliding_window is not None else -1,
|
|
q_data_type=dtype,
|
|
kv_data_type=dtype,
|
|
logits_soft_cap=soft_cap,
|
|
)
|
|
|
|
output = wrapper.run(query, key_value_cache)
|
|
|
|
ref_output = ref_paged_attn(
|
|
query=query,
|
|
key_cache=key_cache,
|
|
value_cache=value_cache,
|
|
query_lens=[1] * num_seqs,
|
|
kv_lens=kv_lens,
|
|
block_tables=block_tables,
|
|
scale=scale,
|
|
soft_cap=soft_cap,
|
|
sliding_window=sliding_window,
|
|
)
|
|
(
|
|
torch.testing.assert_close(output, ref_output, atol=1e-2, rtol=1e-2),
|
|
f"{torch.max(torch.abs(output - ref_output))}",
|
|
)
|
|
|
|
|
|
@pytest.mark.parametrize("seq_lens", [[(1, 1328), (5, 18), (129, 463)]])
|
|
@pytest.mark.parametrize("num_heads", NUM_HEADS)
|
|
@pytest.mark.parametrize("head_size", HEAD_SIZES)
|
|
@pytest.mark.parametrize("block_size", BLOCK_SIZES)
|
|
@pytest.mark.parametrize("dtype", DTYPES)
|
|
@pytest.mark.parametrize("soft_cap", SOFT_CAPS)
|
|
@pytest.mark.parametrize("sliding_window", SLIDING_WINDOWS)
|
|
@torch.inference_mode
|
|
def test_flashinfer_prefill_with_paged_kv(
|
|
seq_lens: list[tuple[int, int]],
|
|
num_heads: tuple[int, int],
|
|
head_size: int,
|
|
dtype: torch.dtype,
|
|
block_size: int,
|
|
soft_cap: float | None,
|
|
sliding_window: int | None,
|
|
) -> None:
|
|
torch.set_default_device("cuda")
|
|
current_platform.seed_everything(0)
|
|
num_seqs = len(seq_lens)
|
|
query_lens = [x[0] for x in seq_lens]
|
|
kv_lens = [x[1] for x in seq_lens]
|
|
num_query_heads = num_heads[0]
|
|
num_kv_heads = num_heads[1]
|
|
assert num_query_heads % num_kv_heads == 0
|
|
max_kv_len = max(kv_lens)
|
|
scale = head_size**-0.5
|
|
|
|
query = torch.randn(sum(query_lens), num_query_heads, head_size, dtype=dtype)
|
|
key_value_cache = torch.randn(
|
|
NUM_BLOCKS, 2, block_size, num_kv_heads, head_size, dtype=dtype
|
|
)
|
|
key_cache = key_value_cache[:, 0, :, :, :].squeeze(1)
|
|
value_cache = key_value_cache[:, 1, :, :, :].squeeze(1)
|
|
|
|
# Normalize the scale of the key and value caches to mitigate
|
|
# numerical instability.
|
|
key_cache /= head_size**0.5
|
|
value_cache /= head_size**0.5
|
|
|
|
max_num_blocks_per_seq = (max_kv_len + block_size - 1) // block_size
|
|
block_tables = torch.randint(
|
|
0, NUM_BLOCKS, (num_seqs, max_num_blocks_per_seq), dtype=torch.int32
|
|
)
|
|
|
|
qo_indptr = [0]
|
|
kv_indptr = [0]
|
|
kv_indices = []
|
|
kv_last_page_lens = []
|
|
for i in range(num_seqs):
|
|
seq_len = kv_lens[i]
|
|
assert seq_len > 0
|
|
num_blocks = (seq_len + block_size - 1) // block_size
|
|
kv_indices.extend(block_tables[i, :num_blocks])
|
|
kv_indptr.append(kv_indptr[-1] + num_blocks)
|
|
kv_last_page_len = seq_len % block_size
|
|
if kv_last_page_len == 0:
|
|
kv_last_page_len = block_size
|
|
kv_last_page_lens.append(kv_last_page_len)
|
|
qo_indptr.append(qo_indptr[-1] + query_lens[i])
|
|
|
|
qo_indptr = torch.tensor(qo_indptr, dtype=torch.int32)
|
|
kv_indptr = torch.tensor(kv_indptr, dtype=torch.int32)
|
|
kv_indices = torch.tensor(kv_indices, dtype=torch.int32)
|
|
kv_last_page_lens = torch.tensor(kv_last_page_lens, dtype=torch.int32)
|
|
|
|
workspace_buffer = torch.empty(128 * 1024 * 1024, dtype=torch.int8)
|
|
wrapper = flashinfer.BatchPrefillWithPagedKVCacheWrapper(workspace_buffer, "NHD")
|
|
wrapper.plan(
|
|
qo_indptr,
|
|
kv_indptr,
|
|
kv_indices,
|
|
kv_last_page_lens,
|
|
num_query_heads,
|
|
num_kv_heads,
|
|
head_size,
|
|
block_size,
|
|
window_left=sliding_window - 1 if sliding_window is not None else -1,
|
|
q_data_type=dtype,
|
|
kv_data_type=dtype,
|
|
logits_soft_cap=soft_cap,
|
|
)
|
|
|
|
output = wrapper.run(
|
|
query,
|
|
key_value_cache,
|
|
)
|
|
|
|
ref_output = ref_paged_attn(
|
|
query=query,
|
|
key_cache=key_cache,
|
|
value_cache=value_cache,
|
|
query_lens=query_lens,
|
|
kv_lens=kv_lens,
|
|
block_tables=block_tables,
|
|
scale=scale,
|
|
soft_cap=soft_cap,
|
|
sliding_window=sliding_window,
|
|
)
|
|
(
|
|
torch.testing.assert_close(output, ref_output, atol=5e-2, rtol=1e-2),
|
|
f"{torch.max(torch.abs(output - ref_output))}",
|
|
)
|
|
|
|
|
|
@pytest.mark.parametrize("seq_lens", [[(1, 132), (5, 18)]])
|
|
@pytest.mark.parametrize("num_heads", NUM_HEADS)
|
|
@pytest.mark.parametrize("head_size", HEAD_SIZES)
|
|
@pytest.mark.parametrize("block_size", BLOCK_SIZES)
|
|
@pytest.mark.parametrize("dtype", DTYPES)
|
|
@pytest.mark.parametrize("soft_cap", SOFT_CAPS)
|
|
def test_flashinfer_prefill_with_paged_fp8_kv(
|
|
seq_lens: list[tuple[int, int]],
|
|
num_heads: tuple[int, int],
|
|
head_size: int,
|
|
dtype: torch.dtype,
|
|
block_size: int,
|
|
soft_cap: float | None,
|
|
) -> None:
|
|
pytest.skip("TODO: fix the accuracy issue")
|
|
torch.set_default_device("cuda")
|
|
current_platform.seed_everything(0)
|
|
num_seqs = len(seq_lens)
|
|
query_lens = [x[0] for x in seq_lens]
|
|
kv_lens = [x[1] for x in seq_lens]
|
|
num_query_heads = num_heads[0]
|
|
num_kv_heads = num_heads[1]
|
|
assert num_query_heads % num_kv_heads == 0
|
|
max_kv_len = max(kv_lens)
|
|
scale = head_size**-0.5
|
|
|
|
kv_cache_dtype = torch.float8_e4m3fn
|
|
|
|
query = torch.randn(sum(query_lens), num_query_heads, head_size, dtype=dtype)
|
|
NUM_BLOCKS_FP8 = 2048
|
|
key_value_cache = torch.randn(
|
|
NUM_BLOCKS_FP8, 2, block_size, num_kv_heads, head_size, dtype=dtype
|
|
)
|
|
key_cache, value_cache = torch.chunk(key_value_cache, 2, dim=1)
|
|
key_cache /= head_size**0.5
|
|
value_cache /= head_size**0.5
|
|
|
|
k_scale = key_cache.amax().item() / 448.0
|
|
v_scale = value_cache.amax().item() / 448.0
|
|
|
|
kv_cache_fp8 = torch.cat([key_cache / k_scale, value_cache / v_scale], dim=1).to(
|
|
kv_cache_dtype
|
|
)
|
|
|
|
assert kv_cache_fp8.shape == key_value_cache.shape
|
|
max_num_blocks_per_seq = (max_kv_len + block_size - 1) // block_size
|
|
block_tables = torch.randint(
|
|
0, NUM_BLOCKS_FP8, (num_seqs, max_num_blocks_per_seq), dtype=torch.int32
|
|
)
|
|
|
|
qo_indptr = [0]
|
|
kv_indptr = [0]
|
|
kv_indices = []
|
|
kv_last_page_lens = []
|
|
for i in range(num_seqs):
|
|
seq_len = kv_lens[i]
|
|
assert seq_len > 0
|
|
num_blocks = (seq_len + block_size - 1) // block_size
|
|
kv_indices.extend(block_tables[i, :num_blocks])
|
|
kv_indptr.append(kv_indptr[-1] + num_blocks)
|
|
kv_last_page_len = seq_len % block_size
|
|
if kv_last_page_len == 0:
|
|
kv_last_page_len = block_size
|
|
kv_last_page_lens.append(kv_last_page_len)
|
|
qo_indptr.append(qo_indptr[-1] + query_lens[i])
|
|
|
|
qo_indptr = torch.tensor(qo_indptr, dtype=torch.int32)
|
|
kv_indptr = torch.tensor(kv_indptr, dtype=torch.int32)
|
|
kv_indices = torch.tensor(kv_indices, dtype=torch.int32)
|
|
kv_last_page_lens = torch.tensor(kv_last_page_lens, dtype=torch.int32)
|
|
|
|
workspace_buffer = torch.empty(128 * 1024 * 1024, dtype=torch.int8)
|
|
wrapper = flashinfer.BatchPrefillWithPagedKVCacheWrapper(workspace_buffer, "NHD")
|
|
wrapper.plan(
|
|
qo_indptr,
|
|
kv_indptr,
|
|
kv_indices,
|
|
kv_last_page_lens,
|
|
num_query_heads,
|
|
num_kv_heads,
|
|
head_size,
|
|
block_size,
|
|
q_data_type=dtype,
|
|
kv_data_type=kv_cache_dtype,
|
|
logits_soft_cap=soft_cap,
|
|
)
|
|
|
|
output = wrapper.run(query, kv_cache_fp8, k_scale=k_scale, v_scale=v_scale)
|
|
|
|
ref_output = ref_paged_attn(
|
|
query=query,
|
|
key_cache=key_cache.squeeze(1),
|
|
value_cache=value_cache.squeeze(1),
|
|
query_lens=query_lens,
|
|
kv_lens=kv_lens,
|
|
block_tables=block_tables,
|
|
scale=scale,
|
|
soft_cap=soft_cap,
|
|
)
|
|
del query
|
|
del block_tables
|
|
# verify prefill fp8
|
|
(
|
|
torch.testing.assert_close(output, ref_output, atol=5e-2, rtol=1e-2),
|
|
f"{torch.max(torch.abs(output - ref_output))}",
|
|
)
|
|
|
|
|
|
@pytest.mark.parametrize("kv_lens", [[1328, 18, 463], [1, 54, 293, 70]])
|
|
@pytest.mark.parametrize("num_heads", NUM_HEADS)
|
|
@pytest.mark.parametrize("head_size", HEAD_SIZES)
|
|
@pytest.mark.parametrize("block_size", BLOCK_SIZES)
|
|
@pytest.mark.parametrize("dtype", DTYPES)
|
|
@pytest.mark.parametrize("soft_cap", SOFT_CAPS)
|
|
@pytest.mark.skip(reason="TODO: fix the accuracy issue")
|
|
@torch.inference_mode
|
|
def test_flashinfer_decode_with_paged_fp8_kv(
|
|
kv_lens: list[int],
|
|
num_heads: tuple[int, int],
|
|
head_size: int,
|
|
dtype: torch.dtype,
|
|
block_size: int,
|
|
soft_cap: float | None,
|
|
) -> None:
|
|
# test doesn't work for num_heads = (16,16)
|
|
torch.set_default_device("cuda")
|
|
current_platform.seed_everything(0)
|
|
num_seqs = len(kv_lens)
|
|
num_query_heads = num_heads[0]
|
|
num_kv_heads = num_heads[1]
|
|
assert num_query_heads % num_kv_heads == 0
|
|
max_kv_len = max(kv_lens)
|
|
scale = head_size**-0.5
|
|
use_tensor_cores = True
|
|
kv_cache_dtype = torch.float8_e4m3fn
|
|
|
|
query = torch.randn(num_seqs, num_query_heads, head_size, dtype=dtype)
|
|
NUM_BLOCKS_FP8 = 2048
|
|
key_value_cache = torch.randn(
|
|
NUM_BLOCKS_FP8, 2, block_size, num_kv_heads, head_size, dtype=dtype
|
|
)
|
|
key_cache, value_cache = torch.chunk(key_value_cache, 2, dim=1)
|
|
key_cache /= head_size**0.5
|
|
value_cache /= head_size**0.5
|
|
|
|
k_scale = key_cache.amax().item() / 448.0
|
|
v_scale = value_cache.amax().item() / 448.0
|
|
|
|
key_cache_fp8 = (key_cache / k_scale).to(kv_cache_dtype)
|
|
value_cache_fp8 = (value_cache / v_scale).to(kv_cache_dtype)
|
|
assert key_cache_fp8.shape[1] == 1 and value_cache_fp8.shape[1] == 1
|
|
kv_cache_fp8 = torch.cat([key_cache_fp8, value_cache_fp8], dim=1)
|
|
|
|
max_num_blocks_per_seq = (max_kv_len + block_size - 1) // block_size
|
|
block_tables = torch.randint(
|
|
0, NUM_BLOCKS_FP8, (num_seqs, max_num_blocks_per_seq), dtype=torch.int32
|
|
)
|
|
|
|
kv_indptr = [0]
|
|
kv_indices = []
|
|
kv_last_page_lens = []
|
|
for i in range(num_seqs):
|
|
seq_len = kv_lens[i]
|
|
assert seq_len > 0
|
|
num_blocks = (seq_len + block_size - 1) // block_size
|
|
kv_indices.extend(block_tables[i, :num_blocks])
|
|
kv_indptr.append(kv_indptr[-1] + num_blocks)
|
|
kv_last_page_len = seq_len % block_size
|
|
if kv_last_page_len == 0:
|
|
kv_last_page_len = block_size
|
|
kv_last_page_lens.append(kv_last_page_len)
|
|
|
|
kv_indptr = torch.tensor(kv_indptr, dtype=torch.int32)
|
|
kv_indices = torch.tensor(kv_indices, dtype=torch.int32)
|
|
kv_last_page_lens = torch.tensor(kv_last_page_lens, dtype=torch.int32)
|
|
|
|
workspace_buffer = torch.empty(128 * 1024 * 1024, dtype=torch.int8)
|
|
wrapper = flashinfer.BatchDecodeWithPagedKVCacheWrapper(
|
|
workspace_buffer, "NHD", use_tensor_cores=use_tensor_cores
|
|
)
|
|
wrapper.plan(
|
|
kv_indptr,
|
|
kv_indices,
|
|
kv_last_page_lens,
|
|
num_query_heads,
|
|
num_kv_heads,
|
|
head_size,
|
|
block_size,
|
|
"NONE",
|
|
q_data_type=dtype,
|
|
kv_data_type=kv_cache_dtype,
|
|
logits_soft_cap=soft_cap,
|
|
)
|
|
output = wrapper.run(query, kv_cache_fp8, k_scale=k_scale, v_scale=v_scale)
|
|
key_cache = key_value_cache[:, 0, :, :, :].squeeze(1)
|
|
value_cache = key_value_cache[:, 1, :, :, :].squeeze(1)
|
|
|
|
ref_output = ref_paged_attn(
|
|
query=query,
|
|
key_cache=key_cache,
|
|
value_cache=value_cache,
|
|
query_lens=[1] * num_seqs,
|
|
kv_lens=kv_lens,
|
|
block_tables=block_tables,
|
|
scale=scale,
|
|
soft_cap=soft_cap,
|
|
)
|
|
# Temporary fix: Increasing the tolerance. Seems like a flashinfer issue
|
|
(
|
|
torch.testing.assert_close(output, ref_output, atol=2e-2, rtol=1e-2),
|
|
f"{torch.max(torch.abs(output - ref_output))}",
|
|
)
|