vllm/tests/kernels/moe/modular_kernel_tools/make_feature_matrix.py
Harry Mellor 8fcaaf6a16
Update Optional[x] -> x | None and Union[x, y] to x | y (#26633)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-10-12 09:51:31 -07:00

197 lines
5.5 KiB
Python

# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import copy
from enum import Enum
from itertools import product
import torch
from tqdm import tqdm
from vllm.config import VllmConfig, set_current_vllm_config
from vllm.model_executor.layers.fused_moe.config import FUSED_MOE_UNQUANTIZED_CONFIG
from vllm.platforms import current_platform
from .common import (
Config,
RankTensors,
WeightTensors,
reference_moe_impl,
run_modular_kernel,
)
from .mk_objects import (
MK_FUSED_EXPERT_TYPES,
MK_MULTI_GPU_PREPARE_FINALIZE_TYPES,
MK_QUANT_CONFIGS,
)
from .parallel_utils import ProcessGroupInfo, parallel_launch_with_config
class Result(Enum):
PASS = 1
FAIL = 2
SKIP = 3
def rank_worker(
pgi: ProcessGroupInfo,
vllm_config: VllmConfig,
cpu_group,
config: Config,
weights: WeightTensors,
):
current_platform.seed_everything(pgi.rank)
# sanity check
from vllm import envs
if config.fused_moe_chunk_size is not None:
assert config.fused_moe_chunk_size == envs.VLLM_FUSED_MOE_CHUNK_SIZE
# get weights to this device
weights.to_current_device()
Ms = config.Ms
assert isinstance(Ms, list)
TOPKs = config.topks
assert isinstance(TOPKs, list)
for m, topk in product(Ms, TOPKs):
print(f"Running m={m}, topk={topk} ...")
# override m and topk
cfgx = copy.deepcopy(config)
cfgx.Ms = m
cfgx.topks = topk
# inputs for rank
rank_tensors = RankTensors.make(cfgx, pgi)
# modular kernel out
mk_out = run_modular_kernel(pgi, vllm_config, cfgx, weights, rank_tensors)
with set_current_vllm_config(vllm_config):
ref_out = reference_moe_impl(cfgx, weights, rank_tensors)
torch.testing.assert_close(ref_out, mk_out, atol=3e-2, rtol=3e-2)
def make_feature_matrix(csv_file_path: str):
from dataclasses import asdict
import pandas as pd
def add_to_results(
config: Config, success: Result, results_df: pd.DataFrame | None = None
):
config_dict = asdict(config)
config_dict["prepare_finalize_type"] = config_dict[
"prepare_finalize_type"
].__name__
config_dict["fused_experts_type"] = config_dict["fused_experts_type"].__name__
config_dict["per_tensor_act_quant"] = config.is_per_tensor_act_quant
quant_config_dict = config_dict["quant_config"]
del config_dict["quant_config"]
if quant_config_dict is None:
quant_config = FUSED_MOE_UNQUANTIZED_CONFIG
quant_config_dict = asdict(quant_config)
config_dict |= quant_config_dict
result_dict = config_dict | {"success": success.name}
result_df = pd.DataFrame([result_dict])
if results_df is None:
results_df = result_df
else:
results_df = pd.concat([results_df, result_df], ignore_index=True)
return results_df
Ms = [64]
Ks = [7168] # hidden sizes
Ns = [2048]
TOPKs = [[4, 1]]
Es = [32]
DTYPEs = [torch.bfloat16]
PF_TYPES = MK_MULTI_GPU_PREPARE_FINALIZE_TYPES
FE_TYPES = MK_FUSED_EXPERT_TYPES
Q_TYPES = MK_QUANT_CONFIGS
combinations = list(
product(Ms, Ks, Ns, Es, TOPKs, DTYPEs, PF_TYPES, FE_TYPES, Q_TYPES)
)
results_df: pd.DataFrame | None = None
for m, k, n, e, topks, dtype, pf_type, experts_type, quant_config in tqdm(
combinations
):
config = Config(
Ms=[m],
K=k,
N=n,
E=e,
topks=topks,
dtype=dtype,
prepare_finalize_type=pf_type,
fused_experts_type=experts_type,
quant_config=quant_config,
world_size=2,
fused_moe_chunk_size=None,
)
success = None
if config.is_valid()[0]:
print(f"Running config : {config.describe()} ...")
try:
weights: WeightTensors = WeightTensors.make(config)
vllm_config, env_dict = config.make_env_data()
parallel_launch_with_config(
config.world_size,
rank_worker,
vllm_config,
env_dict,
config,
weights,
)
success = Result.PASS
except Exception as _:
success = Result.FAIL
else:
success = Result.SKIP
results_df = add_to_results(config, success, results_df)
if results_df is not None:
results_df.to_csv(f"{csv_file_path}")
if __name__ == "__main__":
import argparse
from pathlib import Path
parser = argparse.ArgumentParser(
description=(
"Make ModularKernel feature matrix \n"
"Example : python3 -m tests.kernels.moe.modular_kernel_tools.make_feature_matrix " # noqa: E501
"-f ./feature_matrices/feature_matrix.csv"
)
)
parser.add_argument(
"-f",
"--feature-matrix-csv-file-path",
type=str,
required=True,
help="File name to Generate a .csv file",
)
args = parser.parse_args()
csv_path = args.feature_matrix_csv_file_path
assert csv_path.endswith("csv"), (
f"Need a file path ending with .csv, got {csv_path}"
)
assert Path(csv_path).parent.is_dir(), (
f"Cannot find parent directory for {Path(csv_path).parent}"
)
make_feature_matrix(args.feature_matrix_csv_file_path)