Naveenraj Kamalakannan e614ab7806
Separate MLAAttention class from Attention (#25103)
Signed-off-by: Naveenraj Kamalakannan <therealnaveenkamal@gmail.com>
Signed-off-by: Luka Govedič <ProExpertProg@users.noreply.github.com>
Co-authored-by: Luka Govedič <ProExpertProg@users.noreply.github.com>
2025-10-08 17:11:11 -07:00

168 lines
5.9 KiB
Python

# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
from dataclasses import dataclass
from typing import Optional
import torch
from vllm.attention.layer import MLAAttention
from vllm.config import CacheConfig
from vllm.model_executor.custom_op import CustomOp
from vllm.model_executor.layers.quantization import QuantizationConfig
@dataclass
class MLAModules:
"""Modules used in MLA."""
kv_a_layernorm: torch.nn.Module
kv_b_proj: torch.nn.Module
rotary_emb: torch.nn.Module
o_proj: torch.nn.Module
fused_qkv_a_proj: Optional[torch.nn.Module]
kv_a_proj_with_mqa: Optional[torch.nn.Module]
q_a_layernorm: Optional[torch.nn.Module]
q_b_proj: Optional[torch.nn.Module]
q_proj: Optional[torch.nn.Module]
indexer: Optional[torch.nn.Module]
is_sparse: bool
topk_indices_buffer: Optional[torch.Tensor]
@CustomOp.register("multi_head_latent_attention")
class MultiHeadLatentAttentionWrapper(CustomOp):
"""MLA layer registered as CustomOp to allow OOT backends to add
custom implementations of the outer MLA layer (including rope & o_proj).
Note that currently MLA ignores the enable/disable mechanism of CustomOp
because there is only one in-tree implementation in forward_native.
TODO: implement this with a new PluggableLayer mechanism.
This class takes positions and hidden_states as input.
The input tensors can either contain prefill tokens or decode tokens.
The class does the following:
1. MLA Preprocess.
2. Perform multi-head attention to prefill tokens and
multi-query attention to decode tokens separately.
3. Return the output tensor.
"""
def __init__(
self,
hidden_size: int,
num_heads: int,
scale: float,
qk_nope_head_dim: int,
qk_rope_head_dim: int,
v_head_dim: int,
q_lora_rank: Optional[int],
kv_lora_rank: int,
mla_modules: MLAModules,
cache_config: Optional[CacheConfig] = None,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = "",
) -> None:
super().__init__()
self.hidden_size = hidden_size
self.qk_nope_head_dim = qk_nope_head_dim
self.qk_rope_head_dim = qk_rope_head_dim
self.qk_head_dim = qk_nope_head_dim + qk_rope_head_dim
self.v_head_dim = v_head_dim
self.q_lora_rank = q_lora_rank
self.kv_lora_rank = kv_lora_rank
self.num_heads = num_heads
self.fused_qkv_a_proj = mla_modules.fused_qkv_a_proj
self.kv_a_proj_with_mqa = mla_modules.kv_a_proj_with_mqa
self.q_a_layernorm = mla_modules.q_a_layernorm
self.q_b_proj = mla_modules.q_b_proj
self.q_proj = mla_modules.q_proj
self.kv_a_layernorm = mla_modules.kv_a_layernorm
self.kv_b_proj = mla_modules.kv_b_proj
self.rotary_emb = mla_modules.rotary_emb
self.o_proj = mla_modules.o_proj
self.indexer = mla_modules.indexer
self.is_sparse = mla_modules.is_sparse
if self.indexer is not None:
assert hasattr(self.indexer, "topk_tokens")
self.topk_tokens = self.indexer.topk_tokens
self.topk_indices_buffer = mla_modules.topk_indices_buffer
self.mla_attn = MLAAttention(
num_heads=self.num_heads,
scale=scale,
qk_nope_head_dim=self.qk_nope_head_dim,
qk_rope_head_dim=self.qk_rope_head_dim,
v_head_dim=self.v_head_dim,
q_lora_rank=self.q_lora_rank,
kv_lora_rank=self.kv_lora_rank,
cache_config=cache_config,
quant_config=quant_config,
prefix=f"{prefix}.attn",
kv_b_proj=self.kv_b_proj,
use_sparse=self.is_sparse,
indexer=self.indexer,
)
self.prefix = prefix
def forward_native(
self,
positions: torch.Tensor,
hidden_states: torch.Tensor,
) -> torch.Tensor:
q_c = None
kv_lora = None
if self.q_lora_rank is not None:
assert self.fused_qkv_a_proj is not None, (
"fused_qkv_a_proj is required when q_lora_rank is not None"
)
assert self.q_a_layernorm is not None, (
"q_a_layernorm is required when q_lora_rank is not None"
)
assert self.q_b_proj is not None, (
"q_b_proj is required when q_lora_rank is not None"
)
qkv_lora = self.fused_qkv_a_proj(hidden_states)[0]
q_c, kv_lora = qkv_lora.split(
[self.q_lora_rank, self.kv_lora_rank + self.qk_rope_head_dim],
dim=-1,
)
q_c = self.q_a_layernorm(q_c)
q = self.q_b_proj(q_c)[0]
else:
assert self.kv_a_proj_with_mqa is not None, (
"kv_a_proj_with_mqa is required when q_lora_rank is None"
)
assert self.q_proj is not None, (
"q_proj is required when q_lora_rank is None"
)
kv_lora = self.kv_a_proj_with_mqa(hidden_states)[0]
q = self.q_proj(hidden_states)[0]
kv_c, k_pe = kv_lora.split([self.kv_lora_rank, self.qk_rope_head_dim], dim=-1)
kv_c_normed = self.kv_a_layernorm(kv_c)
q = q.view(-1, self.num_heads, self.qk_head_dim)
# Add head dim of 1 to k_pe
k_pe = k_pe.unsqueeze(1)
q[..., self.qk_nope_head_dim :], k_pe = self.rotary_emb(
positions, q[..., self.qk_nope_head_dim :], k_pe
)
if self.indexer and self.is_sparse:
_topk_indices = self.indexer(hidden_states, q_c, positions, self.rotary_emb)
attn_out = self.mla_attn(
q,
kv_c_normed,
k_pe,
output_shape=(hidden_states.shape[0], self.num_heads * self.v_head_dim),
)
return self.o_proj(attn_out)[0]
def forward_cuda(self, *args, **kwargs):
return self.forward_native(*args, **kwargs)