mirror of
https://git.datalinker.icu/vllm-project/vllm.git
synced 2026-01-23 13:24:30 +08:00
Signed-off-by: Woosuk Kwon <woosuk.kwon@berkeley.edu> Signed-off-by: Woosuk Kwon <woosuk@thinkingmachines.ai>
971 lines
44 KiB
Python
971 lines
44 KiB
Python
# SPDX-License-Identifier: Apache-2.0
|
|
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
|
import ast
|
|
from dataclasses import replace
|
|
from importlib.util import find_spec
|
|
from typing import Optional
|
|
|
|
import numpy as np
|
|
import torch
|
|
import torch.nn as nn
|
|
|
|
from vllm.attention.layer import Attention
|
|
from vllm.config import (CompilationLevel, VllmConfig,
|
|
get_layers_from_vllm_config)
|
|
from vllm.distributed.parallel_state import get_pp_group
|
|
from vllm.forward_context import set_forward_context
|
|
from vllm.logger import init_logger
|
|
from vllm.model_executor.model_loader import get_model
|
|
from vllm.model_executor.models import supports_multimodal
|
|
from vllm.model_executor.models.llama_eagle3 import Eagle3LlamaForCausalLM
|
|
from vllm.platforms import current_platform
|
|
from vllm.utils import is_pin_memory_available
|
|
from vllm.v1.attention.backends.flash_attn import FlashAttentionMetadata
|
|
from vllm.v1.attention.backends.tree_attn import (TreeAttentionMetadata,
|
|
TreeAttentionMetadataBuilder)
|
|
from vllm.v1.attention.backends.triton_attn import TritonAttentionMetadata
|
|
from vllm.v1.attention.backends.utils import (AttentionMetadataBuilder,
|
|
CommonAttentionMetadata)
|
|
from vllm.v1.kv_cache_interface import KVCacheConfig
|
|
from vllm.v1.sample.metadata import SamplingMetadata
|
|
from vllm.v1.spec_decode.metadata import SpecDecodeMetadata
|
|
from vllm.v1.utils import CpuGpuBuffer
|
|
from vllm.v1.worker.gpu_input_batch import CachedRequestState, InputBatch
|
|
|
|
logger = init_logger(__name__)
|
|
|
|
PADDING_SLOT_ID = -1
|
|
|
|
|
|
class EagleProposer:
|
|
|
|
def __init__(
|
|
self,
|
|
vllm_config: VllmConfig,
|
|
device: torch.device,
|
|
runner=None,
|
|
):
|
|
self.vllm_config = vllm_config
|
|
self.speculative_config = vllm_config.speculative_config
|
|
self.draft_model_config = self.speculative_config.draft_model_config
|
|
self.method = self.speculative_config.method
|
|
|
|
self.runner = runner
|
|
self.dtype = vllm_config.model_config.dtype
|
|
self.max_model_len = vllm_config.model_config.max_model_len
|
|
self.block_size = vllm_config.cache_config.block_size
|
|
self.num_speculative_tokens = (
|
|
self.speculative_config.num_speculative_tokens)
|
|
self.max_num_tokens = (
|
|
vllm_config.scheduler_config.max_num_batched_tokens)
|
|
self.token_arange_np = np.arange(self.max_num_tokens)
|
|
# We need to get the hidden size from the draft model config because
|
|
# the draft model's hidden size can be different from the target model's
|
|
# hidden size (e.g., Llama 3.3 70B).
|
|
self.hidden_size = self.draft_model_config.get_hidden_size()
|
|
|
|
self.is_multimodal_model = vllm_config.model_config \
|
|
.is_multimodal_model
|
|
|
|
self.attn_metadata_builder: Optional[AttentionMetadataBuilder] = None
|
|
|
|
self.use_cuda_graph = (self.vllm_config.compilation_config.level
|
|
== CompilationLevel.PIECEWISE and
|
|
not self.vllm_config.model_config.enforce_eager)
|
|
self.cudagraph_batch_sizes = list(
|
|
reversed(
|
|
self.vllm_config.compilation_config.cudagraph_capture_sizes))
|
|
|
|
# persistent buffers for cuda graph
|
|
self.input_ids = torch.zeros(self.max_num_tokens,
|
|
dtype=torch.int32,
|
|
device=device)
|
|
self.positions = torch.zeros(self.max_num_tokens,
|
|
dtype=torch.int64,
|
|
device=device)
|
|
self.hidden_states = torch.zeros(
|
|
(self.max_num_tokens, self.hidden_size),
|
|
dtype=self.dtype,
|
|
device=device)
|
|
|
|
# We need +1 here because the arange is used to set query_start_loc,
|
|
# which has one more element than batch_size.
|
|
max_batch_size = vllm_config.scheduler_config.max_num_seqs
|
|
max_num_slots_for_arange = max(max_batch_size + 1, self.max_num_tokens)
|
|
self.arange = torch.arange(max_num_slots_for_arange,
|
|
device=device,
|
|
dtype=torch.int32)
|
|
|
|
self.inputs_embeds = torch.zeros(
|
|
(self.max_num_tokens, self.hidden_size),
|
|
dtype=self.dtype,
|
|
device=device)
|
|
|
|
self.backup_next_token_ids = CpuGpuBuffer(
|
|
max_batch_size,
|
|
dtype=torch.int32,
|
|
pin_memory=is_pin_memory_available(),
|
|
device=device,
|
|
with_numpy=True)
|
|
|
|
# Determine allowed attention backends once during initialization.
|
|
self.allowed_attn_types: Optional[tuple] = None
|
|
if current_platform.is_rocm():
|
|
rocm_types = [TritonAttentionMetadata, FlashAttentionMetadata]
|
|
# vllm.v1.attention.backends.rocm_aiter_fa is an optional backend
|
|
if find_spec("vllm.v1.attention.backends.rocm_aiter_fa"):
|
|
from vllm.v1.attention.backends.rocm_aiter_fa import (
|
|
AiterFlashAttentionMetadata)
|
|
rocm_types.append(AiterFlashAttentionMetadata)
|
|
self.allowed_attn_types = tuple(rocm_types)
|
|
|
|
# Parse the speculative token tree.
|
|
spec_token_tree = self.speculative_config.speculative_token_tree
|
|
self.tree_choices: list[tuple[int,
|
|
...]] = ast.literal_eval(spec_token_tree)
|
|
tree_depth = len(self.tree_choices[-1])
|
|
# Precompute per-level properties of the tree.
|
|
num_drafts_per_level = [0] * tree_depth
|
|
for node in self.tree_choices:
|
|
num_drafts_per_level[len(node) - 1] += 1
|
|
self.cu_drafts_per_level = [num_drafts_per_level[0]]
|
|
self.child_drafts_per_level = [num_drafts_per_level[0]]
|
|
for level in range(1, tree_depth):
|
|
self.cu_drafts_per_level.append(self.cu_drafts_per_level[-1] +
|
|
num_drafts_per_level[level])
|
|
self.child_drafts_per_level.append(num_drafts_per_level[level] //
|
|
num_drafts_per_level[level - 1])
|
|
# Precompute draft position offsets in flattened tree.
|
|
self.tree_draft_pos_offsets = torch.arange(
|
|
1,
|
|
len(self.tree_choices) + 1,
|
|
device=device,
|
|
dtype=torch.int32,
|
|
).repeat(max_batch_size, 1)
|
|
|
|
def propose(
|
|
self,
|
|
# [num_tokens]
|
|
target_token_ids: torch.Tensor,
|
|
# [num_tokens]
|
|
target_positions: torch.Tensor,
|
|
# [num_tokens, hidden_size]
|
|
target_hidden_states: torch.Tensor,
|
|
# [batch_size]
|
|
next_token_ids: torch.Tensor,
|
|
last_token_indices: Optional[torch.Tensor],
|
|
common_attn_metadata: CommonAttentionMetadata,
|
|
sampling_metadata: SamplingMetadata,
|
|
mm_embeds: Optional[list[torch.Tensor]] = None,
|
|
) -> torch.Tensor:
|
|
num_tokens = target_token_ids.shape[0]
|
|
batch_size = next_token_ids.shape[0]
|
|
|
|
if last_token_indices is None:
|
|
last_token_indices = common_attn_metadata.query_start_loc[1:] - 1
|
|
|
|
if self.method == "eagle3":
|
|
assert isinstance(self.model, Eagle3LlamaForCausalLM)
|
|
target_hidden_states = self.model.combine_hidden_states(
|
|
target_hidden_states)
|
|
assert target_hidden_states.shape[-1] == self.hidden_size
|
|
|
|
# Shift the input ids by one token.
|
|
# E.g., [a1, b1, b2, c1, c2, c3] -> [b1, b2, c1, c2, c3, c3]
|
|
self.input_ids[:num_tokens - 1] = target_token_ids[1:]
|
|
# Replace the last token with the next token.
|
|
# E.g., [b1, b2, c1, c2, c3, c3] -> [a2, b2, b3, c2, c3, c4]
|
|
self.input_ids[last_token_indices] = next_token_ids
|
|
|
|
assert self.runner is not None
|
|
|
|
# Select the correct attention metadata builders for EAGLE layers.
|
|
# Get the attention metadata builders once and reuse for later.
|
|
builder = (self._get_attention_metadata_builder()
|
|
if self.attn_metadata_builder is None else
|
|
self.attn_metadata_builder)
|
|
attn_metadata = builder.build_for_drafting( # type: ignore
|
|
common_attn_metadata=common_attn_metadata,
|
|
draft_index=0)
|
|
|
|
# At this moment, we assume all eagle layers belong to the same KV
|
|
# cache group, thus using the same attention metadata.
|
|
per_layer_attn_metadata = {}
|
|
for layer_name in self.attn_layer_names:
|
|
per_layer_attn_metadata[layer_name] = attn_metadata
|
|
if self.use_cuda_graph and \
|
|
num_tokens <= self.cudagraph_batch_sizes[-1]:
|
|
num_input_tokens = self.vllm_config.pad_for_cudagraph(num_tokens)
|
|
else:
|
|
num_input_tokens = num_tokens
|
|
# copy inputs to buffer for cudagraph
|
|
self.positions[:num_tokens] = target_positions
|
|
self.hidden_states[:num_tokens] = target_hidden_states
|
|
if self.is_multimodal_model:
|
|
input_ids = self.input_ids[:num_tokens]
|
|
inputs_embeds = self.model.get_input_embeddings(
|
|
input_ids,
|
|
multimodal_embeddings=mm_embeds or None,
|
|
)
|
|
self.inputs_embeds[:num_tokens] = inputs_embeds
|
|
inputs_embeds = self.inputs_embeds[:num_input_tokens]
|
|
input_ids = None
|
|
else:
|
|
inputs_embeds = None
|
|
input_ids = self.input_ids[:num_input_tokens]
|
|
|
|
with set_forward_context(per_layer_attn_metadata,
|
|
self.vllm_config,
|
|
num_tokens=num_input_tokens):
|
|
ret_hidden_states = self.model(
|
|
input_ids=input_ids,
|
|
positions=self.positions[:num_input_tokens],
|
|
hidden_states=self.hidden_states[:num_input_tokens],
|
|
inputs_embeds=inputs_embeds,
|
|
)
|
|
if self.method in ("deepseek_mtp", "ernie_mtp", "qwen3_next_mtp"):
|
|
last_hidden_states = ret_hidden_states
|
|
hidden_states = last_hidden_states
|
|
else:
|
|
last_hidden_states, hidden_states = ret_hidden_states
|
|
sample_hidden_states = last_hidden_states[last_token_indices]
|
|
logits = self.model.compute_logits(sample_hidden_states)
|
|
|
|
# Early exit if there is only one draft token to be generated.
|
|
if self.num_speculative_tokens == 1:
|
|
draft_token_ids = logits.argmax(dim=-1)
|
|
return draft_token_ids.view(-1, 1)
|
|
|
|
positions = target_positions[last_token_indices]
|
|
hidden_states = hidden_states[last_token_indices]
|
|
|
|
if isinstance(attn_metadata, TreeAttentionMetadata):
|
|
# Draft using tree attention.
|
|
draft_token_ids_list = self.propose_tree(
|
|
batch_size=batch_size,
|
|
logits=logits,
|
|
positions=positions,
|
|
hidden_states=hidden_states,
|
|
common_attn_metadata=common_attn_metadata,
|
|
)
|
|
# [batch_size, num_tree_tokens]
|
|
return torch.cat(draft_token_ids_list, dim=1)
|
|
|
|
draft_token_ids = logits.argmax(dim=-1)
|
|
|
|
if self.allowed_attn_types is not None and \
|
|
not isinstance(attn_metadata, self.allowed_attn_types):
|
|
raise ValueError(
|
|
f"Unsupported attention metadata type for speculative "
|
|
"decoding with num_speculative_tokens > 1: "
|
|
f"{type(attn_metadata)}. Supported types are: "
|
|
f"{self.allowed_attn_types}")
|
|
|
|
# Generate the remaining draft tokens.
|
|
draft_token_ids_list = [draft_token_ids]
|
|
|
|
if self.use_cuda_graph and \
|
|
batch_size <= self.cudagraph_batch_sizes[-1]:
|
|
input_batch_size = self.vllm_config.pad_for_cudagraph(batch_size)
|
|
else:
|
|
input_batch_size = batch_size
|
|
|
|
common_attn_metadata.num_actual_tokens = batch_size
|
|
common_attn_metadata.max_query_len = 1
|
|
common_attn_metadata.query_start_loc = self.arange[:batch_size + 1]
|
|
common_attn_metadata.query_start_loc_cpu = torch.from_numpy(
|
|
self.token_arange_np[:batch_size + 1]).clone()
|
|
for token_index in range(self.num_speculative_tokens - 1):
|
|
# Update the inputs.
|
|
# cast to int32 is crucial when eagle model is compiled.
|
|
# tensor.argmax() returns int64 by default.
|
|
input_ids = draft_token_ids_list[-1].int()
|
|
positions += 1
|
|
|
|
# NOTE(woosuk): We should handle the case where the draft model
|
|
# generates tokens beyond the max model length. Since it is complex
|
|
# to remove such requests from the batch, we keep them in the batch
|
|
# but adjust the position ids and slot mappings to avoid the
|
|
# out-of-range access during the model execution. The draft tokens
|
|
# generated with this adjustment should be ignored.
|
|
exceeds_max_model_len = positions >= self.max_model_len
|
|
# Mask out the position ids that exceed the max model length.
|
|
# Otherwise, we may get out-of-range error in RoPE.
|
|
clamped_positions = torch.where(exceeds_max_model_len, 0,
|
|
positions)
|
|
|
|
# Increment the sequence lengths.
|
|
common_attn_metadata.seq_lens += 1
|
|
common_attn_metadata.seq_lens_cpu += 1
|
|
# For the requests that exceed the max model length, we set the
|
|
# sequence length to 1 to minimize their overheads in attention.
|
|
common_attn_metadata.seq_lens.masked_fill_(exceeds_max_model_len,
|
|
1)
|
|
|
|
common_attn_metadata.num_computed_tokens_cpu = \
|
|
common_attn_metadata.seq_lens_cpu - 1
|
|
|
|
# Compute the slot mapping.
|
|
block_numbers = clamped_positions // self.block_size
|
|
block_ids = common_attn_metadata.block_table_tensor.gather(
|
|
dim=1, index=block_numbers.view(-1, 1))
|
|
block_ids = block_ids.view(-1)
|
|
common_attn_metadata.slot_mapping = (
|
|
block_ids * self.block_size +
|
|
clamped_positions % self.block_size)
|
|
# Mask out the slot mappings that exceed the max model length.
|
|
# Otherwise, the KV cache will be inadvertently updated with the
|
|
# padding tokens.
|
|
common_attn_metadata.slot_mapping.masked_fill_(
|
|
exceeds_max_model_len, PADDING_SLOT_ID)
|
|
|
|
# Rebuild attention metadata
|
|
attn_metadata = builder.build_for_drafting( # type: ignore
|
|
common_attn_metadata=common_attn_metadata,
|
|
draft_index=token_index + 1)
|
|
for layer_name in self.attn_layer_names:
|
|
per_layer_attn_metadata[layer_name] = attn_metadata
|
|
|
|
# copy inputs to buffer for cudagraph
|
|
self.input_ids[:batch_size] = input_ids
|
|
self.positions[:batch_size] = clamped_positions
|
|
self.hidden_states[:batch_size] = hidden_states
|
|
if self.is_multimodal_model:
|
|
inputs_embeds = self.model.get_input_embeddings(input_ids)
|
|
self.inputs_embeds[:batch_size] = inputs_embeds
|
|
inputs_embeds = self.inputs_embeds[:input_batch_size]
|
|
input_ids = None
|
|
else:
|
|
inputs_embeds = None
|
|
input_ids = self.input_ids[:input_batch_size]
|
|
|
|
# Run the model.
|
|
with set_forward_context(per_layer_attn_metadata,
|
|
self.vllm_config,
|
|
num_tokens=input_batch_size):
|
|
ret_hidden_states = self.model(
|
|
input_ids=input_ids,
|
|
positions=self.positions[:input_batch_size],
|
|
hidden_states=self.hidden_states[:input_batch_size],
|
|
inputs_embeds=inputs_embeds,
|
|
)
|
|
if self.method in ("deepseek_mtp", "ernie_mtp",
|
|
"qwen3_next_mtp"):
|
|
last_hidden_states = ret_hidden_states
|
|
hidden_states = ret_hidden_states
|
|
else:
|
|
last_hidden_states, hidden_states = ret_hidden_states
|
|
hidden_states = hidden_states[:batch_size]
|
|
logits = self.model.compute_logits(last_hidden_states[:batch_size])
|
|
draft_token_ids = logits.argmax(dim=-1)
|
|
draft_token_ids_list.append(draft_token_ids)
|
|
|
|
# [batch_size, num_speculative_tokens]
|
|
draft_token_ids = torch.stack(draft_token_ids_list, dim=1)
|
|
return draft_token_ids
|
|
|
|
def prepare_next_token_ids_cpu(
|
|
self, sampled_token_ids: list[list[int]],
|
|
requests: dict[str,
|
|
CachedRequestState], gpu_input_batch: InputBatch,
|
|
num_scheduled_tokens: dict[str, int]) -> torch.Tensor:
|
|
"""
|
|
This function is used to prepare the inputs for speculative decoding.
|
|
It calculates the next token ids for each request based on the sampled
|
|
token ids from the CPU. If a request has no sampled token ids (e.g.,
|
|
during the initial decoding steps), it falls back to using the request
|
|
state to get the next token id.
|
|
"""
|
|
req_ids = gpu_input_batch.req_ids
|
|
next_token_ids: list[int] = []
|
|
for i, token_ids in enumerate(sampled_token_ids):
|
|
if token_ids:
|
|
# Common case.
|
|
next_token_id = token_ids[-1]
|
|
else:
|
|
# Partial prefill (rare case).
|
|
# Get the next token id from the request state.
|
|
req_id = req_ids[i]
|
|
req_state = requests[req_id]
|
|
seq_len = (req_state.num_computed_tokens +
|
|
num_scheduled_tokens[req_id])
|
|
next_token_id = req_state.get_token_id(seq_len)
|
|
next_token_ids.append(next_token_id)
|
|
next_token_ids = torch.tensor(next_token_ids,
|
|
dtype=torch.int32,
|
|
device=self.input_ids.device)
|
|
return next_token_ids
|
|
|
|
def prepare_next_token_ids_padded(self,
|
|
common_attn_metadata: CommonAttentionMetadata,
|
|
sampled_token_ids: torch.Tensor,
|
|
requests: dict[str, CachedRequestState],
|
|
gpu_input_batch: InputBatch,
|
|
discard_request_indices: torch.Tensor,
|
|
num_discarded_requests: int) -> \
|
|
tuple[torch.Tensor, torch.Tensor]:
|
|
"""
|
|
This function is used to prepare the inputs for speculative decoding.
|
|
It calculates the next token ids and the number of valid sampled tokens
|
|
for each request, considering the "discarded" requests whose next token
|
|
is not sampled and comes from `request.get_token_id()` instead.
|
|
It also accounts for the rejected tokens in `sampled_token_ids`.
|
|
This function must use device functions to operate on the inputs, and
|
|
should not introduce any blocking CPU-GPU synchronization.
|
|
"""
|
|
# TODO(Ben): Combine this into a custom fused kernel
|
|
|
|
# Precompute get_token_id for when there is no valid next token
|
|
num_reqs = gpu_input_batch.num_reqs
|
|
self.backup_next_token_ids.np[:num_reqs] = np.array([
|
|
requests[gpu_input_batch.req_ids[i]].get_token_id(
|
|
common_attn_metadata.seq_lens_cpu[i].item())
|
|
for i in range(num_reqs)
|
|
])
|
|
self.backup_next_token_ids.copy_to_gpu(num_reqs)
|
|
|
|
# Mask out the sampled tokens indices that should not be sampled.
|
|
discard_sampled_tokens_req_indices = \
|
|
discard_request_indices[:num_discarded_requests]
|
|
|
|
valid_sampled_token_ids_gpu = sampled_token_ids.clone()
|
|
valid_sampled_token_ids_gpu.index_fill_(
|
|
0, discard_sampled_tokens_req_indices, -1)
|
|
|
|
# Generate a mask for all valid tokens within those requests
|
|
max_gen_len = sampled_token_ids.shape[-1]
|
|
if max_gen_len == 1:
|
|
valid_mask = torch.ones_like(valid_sampled_token_ids_gpu,
|
|
dtype=torch.bool)
|
|
else:
|
|
valid_mask = (
|
|
(valid_sampled_token_ids_gpu != -1) &
|
|
(valid_sampled_token_ids_gpu < gpu_input_batch.vocab_size))
|
|
|
|
# Count the number of valid tokens in each request
|
|
valid_sampled_tokens_count = valid_mask.sum(dim=1)
|
|
|
|
# Get the rightmost valid index per row
|
|
last_valid_indices = valid_sampled_tokens_count - 1
|
|
last_valid_indices_safe = torch.clamp(last_valid_indices, min=0)
|
|
|
|
# Get last valid token from each row
|
|
# (assume undefined state where there is no valid token)
|
|
selected_tokens = torch.gather(
|
|
valid_sampled_token_ids_gpu, 1,
|
|
last_valid_indices_safe.unsqueeze(1)).squeeze(1)
|
|
|
|
# Use last token if valid, pre-computed backup if not
|
|
batch_size = valid_sampled_token_ids_gpu.shape[0]
|
|
next_token_ids = torch.where(
|
|
last_valid_indices != -1, selected_tokens,
|
|
self.backup_next_token_ids.gpu[:batch_size])
|
|
|
|
return next_token_ids, valid_sampled_tokens_count
|
|
|
|
def prepare_inputs_padded(self,
|
|
common_attn_metadata: CommonAttentionMetadata,
|
|
spec_decode_metadata: SpecDecodeMetadata,
|
|
valid_sampled_tokens_count: torch.Tensor) -> \
|
|
tuple[CommonAttentionMetadata, torch.Tensor, torch.Tensor]:
|
|
"""
|
|
This function is used to prepare the inputs for speculative decoding
|
|
It updates the common_attn_metadata for speculative decoding,
|
|
but does not consider the rejected tokens. Instead, all tokens
|
|
are included as inputs to the speculator, with the rejected tokens
|
|
used as padding and filtered out later by `token_indices_to_sample`.
|
|
No blocking CPU operations should be introduced in this function.
|
|
"""
|
|
num_draft_tokens_gpu = torch.cat([
|
|
spec_decode_metadata.cu_num_draft_tokens[0:1],
|
|
spec_decode_metadata.cu_num_draft_tokens[1:] -
|
|
spec_decode_metadata.cu_num_draft_tokens[:-1]
|
|
])
|
|
|
|
num_rejected_tokens_gpu = torch.where(
|
|
num_draft_tokens_gpu > 0,
|
|
num_draft_tokens_gpu + 1 - valid_sampled_tokens_count,
|
|
torch.zeros_like(num_draft_tokens_gpu))
|
|
|
|
query_start_loc_cpu = common_attn_metadata.query_start_loc_cpu
|
|
|
|
new_query_len_per_req = (query_start_loc_cpu[1:] -
|
|
query_start_loc_cpu[:-1])
|
|
|
|
total_num_tokens = query_start_loc_cpu[-1].item()
|
|
token_indices = self.arange[:total_num_tokens]
|
|
|
|
spec_common_attn_metadata = CommonAttentionMetadata(
|
|
query_start_loc=common_attn_metadata.query_start_loc,
|
|
seq_lens=common_attn_metadata.seq_lens,
|
|
query_start_loc_cpu=query_start_loc_cpu,
|
|
seq_lens_cpu=common_attn_metadata.seq_lens_cpu,
|
|
num_computed_tokens_cpu=common_attn_metadata.
|
|
num_computed_tokens_cpu,
|
|
num_reqs=common_attn_metadata.num_reqs,
|
|
num_actual_tokens=total_num_tokens,
|
|
max_query_len=new_query_len_per_req.max().item(),
|
|
max_seq_len=common_attn_metadata.seq_lens_cpu.max().item(),
|
|
block_table_tensor=common_attn_metadata.block_table_tensor,
|
|
slot_mapping=common_attn_metadata.slot_mapping[token_indices],
|
|
causal=True,
|
|
)
|
|
|
|
token_indices_to_sample = common_attn_metadata.query_start_loc[1:] - 1 \
|
|
- num_rejected_tokens_gpu
|
|
|
|
return spec_common_attn_metadata, token_indices, token_indices_to_sample
|
|
|
|
def propose_tree(
|
|
self,
|
|
batch_size: int,
|
|
# [num_tokens, vocab_size]
|
|
logits: torch.Tensor,
|
|
# [num_tokens]
|
|
positions: torch.Tensor,
|
|
# [num_tokens, hidden_size]
|
|
hidden_states: torch.Tensor,
|
|
common_attn_metadata: CommonAttentionMetadata,
|
|
) -> list[torch.Tensor]:
|
|
tree_attn_metadata_builder = \
|
|
self.runner.attn_groups[0][0].get_metadata_builder()
|
|
assert isinstance(tree_attn_metadata_builder,
|
|
TreeAttentionMetadataBuilder)
|
|
|
|
total_num_drafts = self.cu_drafts_per_level[0]
|
|
level_num_drafts = total_num_drafts
|
|
# Sample a draft token for each child at the tree root level.
|
|
num_children = self.child_drafts_per_level[0]
|
|
if num_children == 1:
|
|
draft_token_ids = logits.argmax(dim=-1).view(batch_size, -1)
|
|
else:
|
|
draft_token_ids = torch.topk(logits, num_children,
|
|
dim=-1).indices.view(batch_size, -1)
|
|
draft_token_ids_list = [draft_token_ids]
|
|
draft_hidden_states = hidden_states.view(batch_size, 1, -1)
|
|
|
|
# Initialize empty tensors for concatenation with the level outputs.
|
|
tree_input_ids = torch.empty(0,
|
|
device=self.input_ids.device,
|
|
dtype=self.input_ids.dtype)
|
|
tree_positions = torch.empty(0,
|
|
device=self.positions.device,
|
|
dtype=self.positions.dtype)
|
|
tree_hidden_states = torch.empty(0,
|
|
device=self.hidden_states.device,
|
|
dtype=self.hidden_states.dtype)
|
|
# Precompute the draft token positions.
|
|
flattened_draft_positions = (
|
|
positions.view(batch_size, -1) +
|
|
self.tree_draft_pos_offsets[:batch_size, :])
|
|
tree_depth = len(self.cu_drafts_per_level)
|
|
for level in range(tree_depth - 1):
|
|
# Get draft positions for RoPE.
|
|
draft_positions = positions + (level + 1)
|
|
exceeds_max_model_len = (positions +
|
|
total_num_drafts) >= self.max_model_len
|
|
# Mask out the position ids that exceed the max model length.
|
|
# Otherwise, we may get out-of-range error in RoPE.
|
|
draft_positions = torch.where(
|
|
exceeds_max_model_len,
|
|
0,
|
|
draft_positions,
|
|
).view(batch_size, -1)
|
|
|
|
if level_num_drafts > 1:
|
|
# Repeat the positions for each draft at this level.
|
|
draft_positions = draft_positions.repeat_interleave(
|
|
level_num_drafts, dim=1)
|
|
|
|
if num_children > 1:
|
|
# Repeat draft hidden states for each child.
|
|
draft_hidden_states = draft_hidden_states.repeat_interleave(
|
|
num_children, dim=1)
|
|
|
|
# Concatenate the draft tokens, positions, and hidden states.
|
|
tree_input_ids = torch.cat([tree_input_ids, draft_token_ids],
|
|
dim=1)
|
|
tree_positions = torch.cat([tree_positions, draft_positions],
|
|
dim=1)
|
|
tree_hidden_states = torch.cat(
|
|
[tree_hidden_states, draft_hidden_states], dim=1)
|
|
|
|
# Build new attention metadata for the next level of drafts.
|
|
# This is necessary to support tree attention.
|
|
query_len = total_num_drafts
|
|
common_attn_metadata = replace(
|
|
common_attn_metadata,
|
|
query_start_loc=query_len * self.arange[:batch_size + 1],
|
|
seq_lens=common_attn_metadata.seq_lens + level_num_drafts,
|
|
num_actual_tokens=batch_size * query_len,
|
|
max_query_len=query_len,
|
|
)
|
|
attn_metadata = tree_attn_metadata_builder.build_for_drafting(
|
|
common_attn_metadata=common_attn_metadata,
|
|
draft_index=level + 1,
|
|
)
|
|
|
|
# Apply new attention metadata to all layers.
|
|
per_layer_attn_metadata = {}
|
|
for layer_name in self.attn_layer_names:
|
|
per_layer_attn_metadata[layer_name] = attn_metadata
|
|
|
|
# Consider max model length.
|
|
attn_metadata.max_seq_len = min(attn_metadata.max_seq_len,
|
|
self.max_model_len)
|
|
# For the requests that exceed the max model length, we set the
|
|
# sequence length to 1 to minimize their overheads in attention.
|
|
attn_metadata.seq_lens.masked_fill_(exceeds_max_model_len, 1)
|
|
|
|
# Compute the slot mapping.
|
|
query_positions = flattened_draft_positions[:, level:level +
|
|
query_len]
|
|
block_numbers = query_positions // self.block_size
|
|
block_ids = attn_metadata.block_table.gather(dim=1,
|
|
index=block_numbers)
|
|
slot_mapping = (block_ids * self.block_size +
|
|
query_positions % self.block_size)
|
|
# Mask out the slot mappings that exceed the max model length.
|
|
# Otherwise, the KV cache will be inadvertently updated with the
|
|
# padding tokens.
|
|
slot_mapping[exceeds_max_model_len] = PADDING_SLOT_ID
|
|
attn_metadata.slot_mapping = slot_mapping.view(-1)
|
|
|
|
# Copy inputs to buffer for cudagraph.
|
|
num_tokens = attn_metadata.num_actual_tokens
|
|
input_ids = tree_input_ids.view(-1)
|
|
self.input_ids[:num_tokens] = input_ids
|
|
self.positions[:num_tokens] = tree_positions.view(-1)
|
|
self.hidden_states[:num_tokens] = tree_hidden_states.view(
|
|
num_tokens, -1)
|
|
|
|
if self.use_cuda_graph and \
|
|
num_tokens <= self.cudagraph_batch_sizes[-1]:
|
|
num_input_tokens = self.vllm_config.pad_for_cudagraph(
|
|
num_tokens)
|
|
else:
|
|
num_input_tokens = num_tokens
|
|
# Run the model.
|
|
with set_forward_context(per_layer_attn_metadata,
|
|
self.vllm_config,
|
|
num_tokens=num_input_tokens):
|
|
last_hidden_states, hidden_states = self.model(
|
|
input_ids=self.input_ids[:num_input_tokens],
|
|
positions=self.positions[:num_input_tokens],
|
|
hidden_states=self.hidden_states[:num_input_tokens],
|
|
inputs_embeds=None,
|
|
)
|
|
|
|
# Get the output hidden states for the draft tokens.
|
|
draft_hidden_states = hidden_states[:num_tokens].view(
|
|
batch_size, query_len, -1)[:, -level_num_drafts:]
|
|
draft_last_hidden_states = last_hidden_states[:num_tokens].view(
|
|
batch_size, query_len, -1)[:, -level_num_drafts:]
|
|
|
|
# Get the output logits for the draft tokens.
|
|
logits = self.model.compute_logits(
|
|
draft_last_hidden_states.reshape(batch_size * level_num_drafts,
|
|
-1))
|
|
|
|
# Sample a draft token for each child at the next tree level.
|
|
num_children = self.child_drafts_per_level[level + 1]
|
|
if num_children == 1:
|
|
draft_token_ids = logits.argmax(dim=-1).view(batch_size, -1)
|
|
else:
|
|
draft_token_ids = torch.topk(logits, num_children,
|
|
dim=-1).indices.view(
|
|
batch_size, -1)
|
|
draft_token_ids_list.append(draft_token_ids)
|
|
|
|
# Update the # drafts counters for the next tree level.
|
|
level_num_drafts = self.cu_drafts_per_level[level +
|
|
1] - total_num_drafts
|
|
total_num_drafts = self.cu_drafts_per_level[level + 1]
|
|
return draft_token_ids_list
|
|
|
|
def prepare_inputs(
|
|
self,
|
|
common_attn_metadata: CommonAttentionMetadata,
|
|
sampled_token_ids: list[list[int]],
|
|
num_draft_tokens: list[int],
|
|
) -> tuple[CommonAttentionMetadata, torch.Tensor]:
|
|
"""
|
|
This function is used to prepare the inputs for speculative decoding.
|
|
It updates to the common_attn_metadata to account for the rejected
|
|
tokens (and newly sampled tokens). It also returns the token indices
|
|
of the tokens that should be fed to the speculator.
|
|
"""
|
|
# E.g.
|
|
# common_attn_metadata.query_start_loc{_cpu}:
|
|
# [0, q1, q1 + q2, q1 + q2 + q3]
|
|
# common_attn_metadata.seq_lens{_cpu}: [s1, s2, s3]
|
|
# num_rejected_tokens: [n1, n2, n3]
|
|
# This function computes the intermediate values:
|
|
# num_tokens_per_req: [q1 - n1, q2 - n2, q3 - n3]
|
|
# And returns:
|
|
# common_attn_metadata.query_start_loc{_cpu}:
|
|
# [0, q1 - n1, q1 + q2 - n1 - n2, q1 + q2 + q3 - n1 - n2 - n3]
|
|
# common_attn_metadata.seq_lens{_cpu}:
|
|
# [s1 - n1 + 1, s2 - n2 + 1, s3 - n3 + 1]
|
|
# token_indices: [0, 1, ..., q1 - n1 - 1,
|
|
# q1, q1 + 1, ..., q1 + q2 - n2 - 1,
|
|
# q1 + q2, q1 + q2 + 1, ..., q1 + q2 + q3 - n3 - 1]
|
|
|
|
num_rejected_tokens = [
|
|
n + 1 - len(sampled_token_ids[i]) if n > 0 else 0
|
|
for i, n in enumerate(num_draft_tokens)
|
|
]
|
|
num_rejected_tokens = torch.tensor(num_rejected_tokens,
|
|
dtype=torch.int32)
|
|
|
|
device = common_attn_metadata.query_start_loc.device
|
|
query_start_loc_cpu = common_attn_metadata.query_start_loc_cpu
|
|
new_seq_lens_cpu = common_attn_metadata.seq_lens_cpu \
|
|
- num_rejected_tokens
|
|
|
|
# [0, q1, q1 + q2, q1 + q2 + q3] -> [q1, q2, q3]
|
|
new_query_len_per_req = (query_start_loc_cpu[1:] -
|
|
query_start_loc_cpu[:-1])
|
|
# [q1, q2, q3] -> [q1 - n1, q2 - n2, q3 - n3]
|
|
new_num_tokens_per_req = new_query_len_per_req - num_rejected_tokens
|
|
new_num_tokens_per_req_np = new_num_tokens_per_req.numpy()
|
|
|
|
# [q1 - n1, q2 - n2, q3 - n3] ->
|
|
# [0, q1 - n1, q1 + q2 - n1 - n2, q1 + q2 + q3 - n1 - n2 - n3]
|
|
new_query_start_loc_cpu = torch.zeros(
|
|
query_start_loc_cpu.shape,
|
|
dtype=torch.int32,
|
|
pin_memory=is_pin_memory_available())
|
|
new_query_start_loc_np = new_query_start_loc_cpu.numpy()
|
|
np.cumsum(new_num_tokens_per_req_np, out=new_query_start_loc_np[1:])
|
|
|
|
total_num_tokens = new_query_start_loc_np[-1]
|
|
# Example assuming num_tokens_per_req_np = [2, 4, 3]
|
|
# this implies that `new_query_start_locs` is:
|
|
# [0, 2, 6, 9] ->
|
|
# [0, 0, 2, 2, 2, 2, 6, 6, 6]
|
|
# _r1_ ____r2____ ___r3__
|
|
new_query_start_locs_expanded = np.repeat(new_query_start_loc_np[:-1],
|
|
new_num_tokens_per_req_np)
|
|
# [0, 1, 2, 3, 4, 5, 6, 7, 8] ->
|
|
# [0, 1, 0, 1, 2, 3, 0, 1, 2]
|
|
# _r1_ ____r2____ ___r3__
|
|
token_offests = self.token_arange_np[:total_num_tokens] \
|
|
- new_query_start_locs_expanded
|
|
|
|
# Expand starting positions to match token pattern
|
|
# [0, q1, q1 + q2] ->
|
|
# [0, 0, q1, q1, q1, q1, q1 + q2, q1 + q2, q1 + q2]
|
|
# _r1_ _____r2_______ ___________r3____________
|
|
old_query_start_locs_expanded = np.repeat(
|
|
query_start_loc_cpu[:-1].numpy(), new_num_tokens_per_req_np)
|
|
# Final token indices are:
|
|
# [0, 1, // req 1
|
|
# q1 + 0, q1 + 1, q1 + 2, q1 + 3, // req 2
|
|
# q1 + q2 + 0, q1 + q2 + 1, q1 + q2 + 2] // req 3
|
|
token_indices_np = token_offests + old_query_start_locs_expanded
|
|
token_indices = torch.from_numpy(token_indices_np).to(
|
|
device, non_blocking=True)
|
|
|
|
spec_common_attn_metadata = CommonAttentionMetadata(
|
|
query_start_loc=new_query_start_loc_cpu.to(device,
|
|
non_blocking=True),
|
|
seq_lens=new_seq_lens_cpu.to(device, non_blocking=True),
|
|
query_start_loc_cpu=new_query_start_loc_cpu,
|
|
seq_lens_cpu=new_seq_lens_cpu,
|
|
num_computed_tokens_cpu=common_attn_metadata.
|
|
num_computed_tokens_cpu,
|
|
num_reqs=common_attn_metadata.num_reqs,
|
|
num_actual_tokens=total_num_tokens,
|
|
max_query_len=new_query_len_per_req.max().item(),
|
|
max_seq_len=new_seq_lens_cpu.max().item(),
|
|
block_table_tensor=common_attn_metadata.block_table_tensor,
|
|
slot_mapping=common_attn_metadata.slot_mapping[token_indices],
|
|
causal=True,
|
|
)
|
|
|
|
return spec_common_attn_metadata, token_indices
|
|
|
|
def load_model(self, target_model: nn.Module) -> None:
|
|
draft_model_config = \
|
|
self.vllm_config.speculative_config.draft_model_config
|
|
target_attn_layer_names = set(
|
|
get_layers_from_vllm_config(self.vllm_config, Attention).keys())
|
|
|
|
from vllm.compilation.backends import set_model_tag
|
|
with set_model_tag("eagle_head"):
|
|
self.model = get_model(vllm_config=self.vllm_config,
|
|
model_config=draft_model_config)
|
|
|
|
draft_attn_layer_names = (
|
|
get_layers_from_vllm_config(self.vllm_config, Attention).keys() -
|
|
target_attn_layer_names)
|
|
|
|
self.attn_layer_names = list(draft_attn_layer_names)
|
|
|
|
if supports_multimodal(target_model):
|
|
# handle multimodality
|
|
self.model.config.image_token_index = (
|
|
target_model.config.image_token_index)
|
|
target_language_model = target_model.get_language_model()
|
|
else:
|
|
target_language_model = target_model
|
|
# share embed_tokens with the target model if needed
|
|
if get_pp_group().world_size == 1:
|
|
if hasattr(target_language_model.model, 'embed_tokens'):
|
|
target_embed_tokens = target_language_model.model.embed_tokens
|
|
elif hasattr(target_language_model.model, 'embedding'):
|
|
target_embed_tokens = target_language_model.model.embedding
|
|
else:
|
|
raise AttributeError(
|
|
"Target model does not have 'embed_tokens' or 'embedding' "
|
|
"attribute")
|
|
|
|
# Check if shapes match and we found the embedding
|
|
eagle_shape = self.model.model.embed_tokens.weight.shape
|
|
target_shape = target_embed_tokens.weight.shape
|
|
if eagle_shape == target_shape:
|
|
logger.info(
|
|
"Assuming the EAGLE head shares the same vocab embedding"
|
|
" with the target model.")
|
|
del self.model.model.embed_tokens
|
|
self.model.model.embed_tokens = target_embed_tokens
|
|
else:
|
|
logger.info(
|
|
"The EAGLE head's vocab embedding will be loaded separately"
|
|
" from the target model.")
|
|
else:
|
|
logger.info(
|
|
"The EAGLE head's vocab embedding will be loaded separately"
|
|
" from the target model.")
|
|
|
|
# share lm_head with the target model if needed
|
|
# some model definition do not define lm_head explicitly
|
|
# and reuse embed_tokens for lm_head, e.g., CohereForCausalLM
|
|
if self.vllm_config.speculative_config.method != "eagle3":
|
|
if hasattr(target_language_model, "lm_head"):
|
|
logger.info(
|
|
"Loading EAGLE LM head weights from the target model.")
|
|
self.model.lm_head = target_language_model.lm_head
|
|
else:
|
|
if (hasattr(self.model, "lm_head")
|
|
and hasattr(target_language_model, "lm_head")
|
|
and self.model.lm_head.weight.shape
|
|
== target_language_model.lm_head.weight.shape):
|
|
logger.info("Assuming the EAGLE head shares the same lm_head"
|
|
" with the target model.")
|
|
del self.model.lm_head
|
|
self.model.lm_head = target_language_model.lm_head
|
|
else:
|
|
logger.info(
|
|
"The EAGLE head's lm_head will be loaded separately"
|
|
" from the target model.")
|
|
|
|
@torch.inference_mode()
|
|
def dummy_run(
|
|
self,
|
|
num_tokens: int,
|
|
) -> None:
|
|
with set_forward_context(None, self.vllm_config,
|
|
num_tokens=num_tokens):
|
|
if self.is_multimodal_model:
|
|
input_ids = None
|
|
inputs_embeds = self.inputs_embeds[:num_tokens]
|
|
else:
|
|
input_ids = self.input_ids[:num_tokens]
|
|
inputs_embeds = None
|
|
|
|
self.model(
|
|
input_ids=input_ids,
|
|
positions=self.positions[:num_tokens],
|
|
hidden_states=self.hidden_states[:num_tokens],
|
|
inputs_embeds=inputs_embeds,
|
|
)
|
|
|
|
def _get_attention_metadata_builder(
|
|
self) -> list[AttentionMetadataBuilder]:
|
|
"""Find and return the attention metadata builders for EAGLE layers.
|
|
|
|
Returns:
|
|
The metadata builders for EAGLE layers.
|
|
|
|
Raises:
|
|
AssertionError: If no metadata builders are found for EAGLE layers.
|
|
"""
|
|
builder = None
|
|
chosen_layer = self.attn_layer_names[0]
|
|
|
|
for kv_cache_group in self.runner.attn_groups:
|
|
for attn_group in kv_cache_group:
|
|
if chosen_layer in attn_group.layer_names:
|
|
builder = attn_group.get_metadata_builder()
|
|
break
|
|
if builder is not None:
|
|
break
|
|
|
|
assert builder is not None, (
|
|
"Failed to find attention metadata builder for EAGLE layers.")
|
|
return builder
|
|
|
|
def validate_same_kv_cache_group(self,
|
|
kv_cache_config: KVCacheConfig) -> None:
|
|
"""
|
|
Validate that all eagle layers belong to the same KVCacheGroup.
|
|
Need this assumption to ensure all eagle layers can use the
|
|
same AttentionMetadata.
|
|
May extend to multiple AttentionMetadata in the future.
|
|
"""
|
|
kv_cache_groups: dict[str, int] = {}
|
|
for id, kv_cache_group in enumerate(kv_cache_config.kv_cache_groups):
|
|
for layer_name in kv_cache_group.layer_names:
|
|
kv_cache_groups[layer_name] = id
|
|
assert len(
|
|
set([
|
|
kv_cache_groups[layer_name]
|
|
for layer_name in self.attn_layer_names
|
|
])
|
|
) == 1, "All eagle layers should belong to the same kv cache group"
|
|
|
|
|
|
# NOTE(woosuk): Currently, the below code is not used and we always use argmax
|
|
# to sample the draft tokens. We will use this after we find a way to manage
|
|
# the draft prob tensor.
|
|
# Refer to https://github.com/vllm-project/vllm/pull/16899 for the details.
|
|
# FIXME(woosuk): The logic here is duplicated with the main sampling code.
|
|
# We should refactor this to reuse the same sampling implementation.
|
|
def compute_probs_and_sample_next_token(
|
|
logits: torch.Tensor,
|
|
sampling_metadata: SamplingMetadata,
|
|
) -> tuple[torch.Tensor, torch.Tensor]:
|
|
if sampling_metadata.all_greedy:
|
|
# For greedy requests, draft_probs is not used in rejection sampling.
|
|
# Therefore, we can just return the logits.
|
|
probs = logits
|
|
next_token_ids = logits.argmax(dim=-1)
|
|
return next_token_ids, probs
|
|
|
|
is_greedy = sampling_metadata.temperature == -1
|
|
temperature = torch.where(is_greedy, 1.0, sampling_metadata.temperature)
|
|
logits.div_(temperature.view(-1, 1))
|
|
probs = logits.softmax(dim=-1, dtype=torch.float32)
|
|
|
|
# NOTE(woosuk): Currently, we ignore most of the sampling parameters in
|
|
# generating the draft tokens. We only use the temperature. While this
|
|
# could degrade the acceptance rate, it does not affect the distribution
|
|
# of the generated tokens after rejection sampling.
|
|
|
|
# TODO(woosuk): Consider seeds.
|
|
q = torch.empty_like(probs)
|
|
q.exponential_()
|
|
# NOTE(woosuk): We shouldn't use `probs.div_(q)` because the draft_probs
|
|
# will be used later for rejection sampling.
|
|
next_token_ids = probs.div(q).argmax(dim=-1).view(-1)
|
|
if not sampling_metadata.all_random:
|
|
greedy_token_ids = probs.argmax(dim=-1)
|
|
next_token_ids = torch.where(
|
|
is_greedy,
|
|
greedy_token_ids,
|
|
next_token_ids,
|
|
)
|
|
return next_token_ids, probs
|