vllm/vllm/model_executor/layers/spec_decode_base_sampler.py

253 lines
9.8 KiB
Python

from abc import abstractmethod
from typing import Dict, Optional, Union
import torch
import torch.jit
import torch.nn as nn
class SpecDecodeBaseSampler(nn.Module):
"""Base class for samplers used for Speculative Decoding verification
step.
"""
def __init__(self,
disable_bonus_tokens: bool = True,
strict_mode: bool = False):
"""Base class constructor.
Args:
disable_bonus_tokens: Whether or not to disable the bonus token.
Require when bonus tokens will cause corrupt KV cache for
proposal methods that require KV cache.
strict_mode: Whether or not to perform shape/device/dtype checks
during sampling. This catches correctness issues but adds
nontrivial latency.
"""
super().__init__()
self._disable_bonus_tokens = disable_bonus_tokens
self._strict_mode = strict_mode
# NOTE: A "bonus token" is accepted iff all proposal tokens are
# accepted. There is always only one possible bonus token. We store this
# value in a variable for readability.
self._num_bonus_tokens = 1
self.num_accepted_tokens: Optional[torch.Tensor] = None
self.num_emitted_tokens: Optional[torch.Tensor] = None
self.num_draft_tokens: int = 0
def init_gpu_tensors(self, device: Union[int, str]) -> None:
assert self.num_accepted_tokens is None
if isinstance(device, int):
device = f"cuda:{device}"
elif not isinstance(device, str):
raise ValueError(f"Device must be int or str, get {type(device)}")
self.num_accepted_tokens = torch.tensor(0,
dtype=torch.long,
device=device)
self.num_emitted_tokens = torch.tensor(0,
dtype=torch.long,
device=device)
@property
def probs_dtype(self):
return torch.float32
@property
def token_id_dtype(self):
return torch.int64
def _create_output(
self,
accepted: torch.Tensor, # [batch_size, k]
substitute_token_ids: torch.Tensor, # [batch_size, k]
draft_token_ids: torch.Tensor, # [batch_size, k]
bonus_token_ids: torch.Tensor, # [batch_size]
) -> torch.Tensor:
"""Format output. Returns a matrix of token ids. When
a token is rejected via sampling, all subsequent token ids are
set to -1 for the sequence.
Args:
accepted: A boolean tensor indicating if the corresponding
draft token in draft_token_ids should be accepted or not.
substitute_token_ids: A tensor of token_ids that can be used
as substitutes for the draft token ids if the proposed token
is rejected.
draft_token_ids: A tensor of token ids speculated by the
draft model.
bonus_token_ids: Token ids to use as the bonus token if
all the draft tokens are accepted.
Returns:
A tensor containing the accepted token ids. The shape of the
tensor is [batch_size, k + num_bonus_tokens]
"""
batch_size, k = substitute_token_ids.shape
bonus_token_ids = bonus_token_ids.squeeze()
# Determine the index of the first False value for each row.
limits = (accepted == 0).max(1).indices
limits[~(accepted == 0).any(1)] = k
# Create masks using the indices.
indices = torch.arange(k, device=accepted.device).unsqueeze(0)
accepted_mask = indices < limits.unsqueeze(1)
after_false_mask = indices == limits.unsqueeze(1)
# Create an extended output tensor
output_with_bonus_tokens = -torch.ones(
(batch_size, k + self._num_bonus_tokens),
dtype=self.token_id_dtype,
device=accepted.device)
output = output_with_bonus_tokens[:, :k]
# Fill in the first k columns of the output tensor using masks and data
# tensors.
output[:, :k] = torch.where(accepted_mask, draft_token_ids,
-torch.ones_like(draft_token_ids))
# Fill the last column.
# We check output directly as accepted may have True values inconsistent
# with causal acceptance.
output_with_bonus_tokens[:, -1] = torch.where(output[:, -1] != -1,
bonus_token_ids, -1)
# We disable bonus tokens because it causes corrupt KV cache for
# proposal methods that require KV cache. We can fix it by "prefilling"
# the bonus token in the proposer. The following issue tracks the fix.
# https://github.com/vllm-project/vllm/issues/4212
if self._disable_bonus_tokens:
output_with_bonus_tokens[:, -1] = -1
# Fill the recovered token ids.
output.mul_(~after_false_mask).add_(
substitute_token_ids.mul(after_false_mask))
self.num_accepted_tokens += accepted.sum()
self.num_emitted_tokens += (output_with_bonus_tokens != -1).sum()
self.num_draft_tokens += batch_size * k
return output_with_bonus_tokens
def _raise_if_incorrect_input(
self,
target_with_bonus_probs: torch.Tensor,
draft_token_ids: torch.Tensor,
bonus_token_ids: torch.Tensor,
draft_probs: Optional[torch.Tensor] = None,
) -> None:
self._raise_if_incorrect_shape(target_with_bonus_probs,
draft_token_ids, bonus_token_ids,
draft_probs)
self._raise_if_incorrect_dtype(target_with_bonus_probs,
draft_token_ids, bonus_token_ids,
draft_probs)
self._raise_if_inconsistent_device(target_with_bonus_probs,
draft_token_ids, bonus_token_ids,
draft_probs)
self._raise_if_out_of_bounds_vocab(target_with_bonus_probs.shape[-1],
draft_token_ids, bonus_token_ids)
def _raise_if_incorrect_shape(
self,
target_with_bonus_probs: torch.Tensor,
draft_token_ids: torch.Tensor,
bonus_token_ids: torch.Tensor,
draft_probs: Optional[torch.Tensor] = None,
) -> None:
(target_batch_size, num_target_probs,
target_vocab_size) = target_with_bonus_probs.shape
# Does not count the extra token
num_target_probs -= 1
# validate the shape of draft token ids.
draft_token_ids_batch_size, num_draft_token_ids = draft_token_ids.shape
assert draft_token_ids_batch_size == target_batch_size
assert num_draft_token_ids == num_target_probs
# validate the shape of bonus token ids
bonus_batch_size, num_bonus_tokens = bonus_token_ids.shape
assert bonus_batch_size == target_batch_size
assert num_bonus_tokens == self._num_bonus_tokens
# validate the shape of draft probs if it is set
if draft_probs is not None:
(draft_batch_size, num_draft_probs,
draft_vocab_size) = draft_probs.shape
assert draft_batch_size == target_batch_size
assert num_draft_probs == num_target_probs
assert (draft_vocab_size == target_vocab_size
), f"{draft_vocab_size=} {target_vocab_size=}"
def _raise_if_incorrect_dtype(
self,
target_with_bonus_probs: torch.Tensor,
draft_token_ids: torch.Tensor,
bonus_token_ids: torch.Tensor,
draft_probs: Optional[torch.Tensor] = None,
) -> None:
assert target_with_bonus_probs.dtype == self.probs_dtype
assert draft_token_ids.dtype == self.token_id_dtype
assert bonus_token_ids.dtype == self.token_id_dtype
if draft_probs is not None:
assert draft_probs.dtype == self.probs_dtype
def _raise_if_inconsistent_device(
self,
target_with_bonus_probs: torch.Tensor,
draft_token_ids: torch.Tensor,
bonus_token_ids: torch.Tensor,
draft_probs: Optional[torch.Tensor] = None,
) -> None:
devices = [
t.device for t in [
target_with_bonus_probs, bonus_token_ids, draft_probs,
draft_token_ids
] if t is not None
]
assert all([devices[0] == device for device in devices])
def _raise_if_out_of_bounds_vocab(
self,
vocab_size: int,
draft_token_ids: torch.Tensor,
bonus_token_ids: torch.Tensor,
) -> None:
assert torch.all(bonus_token_ids < vocab_size)
assert torch.all(bonus_token_ids >= 0)
assert torch.all(draft_token_ids < vocab_size)
assert torch.all(draft_token_ids >= 0)
class SpecDecodeDeterministicBaseSampler(SpecDecodeBaseSampler):
"""Base class for samplers used for Speculative Decoding verification
step which are deterministic.
"""
@abstractmethod
def forward(
self,
target_with_bonus_probs: torch.Tensor,
bonus_token_ids: torch.Tensor,
draft_probs: torch.Tensor,
draft_token_ids: torch.Tensor,
) -> torch.Tensor:
raise NotImplementedError
class SpecDecodeStochasticBaseSampler(SpecDecodeBaseSampler):
"""Base class for samplers used for Speculative Decoding verification
step which are stochastic
"""
@abstractmethod
def forward(
self,
target_with_bonus_probs: torch.Tensor,
bonus_token_ids: torch.Tensor,
draft_probs: torch.Tensor,
draft_token_ids: torch.Tensor,
seeded_seqs: Optional[Dict[int, torch.Generator]] = None,
) -> torch.Tensor:
raise NotImplementedError