Qubitium-ModelCloud ee93f4f92a
[CORE] Quantized lm-head Framework (#4442)
Co-authored-by: Robert Shaw <rshaw@neuralmagic.com>
Co-authored-by: ZX <zx@lbx.dev>
2024-07-02 22:25:17 +00:00

295 lines
10 KiB
Python

# coding=utf-8
# Adapted from
# https://github.com/huggingface/transformers/blob/v4.28.0/src/transformers/models/gptj/modeling_gptj.py
# Copyright 2023 The vLLM team.
# Copyright 2021 The EleutherAI and HuggingFace Teams. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Inference-only GPT-J model compatible with HuggingFace weights."""
from typing import Iterable, List, Optional, Tuple
import torch
from torch import nn
from transformers import GPTJConfig
from vllm.attention import Attention, AttentionMetadata
from vllm.config import CacheConfig
from vllm.distributed import get_tensor_model_parallel_world_size
from vllm.model_executor.layers.activation import get_act_fn
from vllm.model_executor.layers.linear import (ColumnParallelLinear,
QKVParallelLinear,
RowParallelLinear)
from vllm.model_executor.layers.logits_processor import LogitsProcessor
from vllm.model_executor.layers.quantization.base_config import (
QuantizationConfig)
from vllm.model_executor.layers.rotary_embedding import get_rope
from vllm.model_executor.layers.sampler import Sampler
from vllm.model_executor.layers.vocab_parallel_embedding import (
ParallelLMHead, VocabParallelEmbedding)
from vllm.model_executor.model_loader.weight_utils import default_weight_loader
from vllm.model_executor.sampling_metadata import SamplingMetadata
from vllm.sequence import IntermediateTensors, SamplerOutput
class GPTJAttention(nn.Module):
def __init__(
self,
config: GPTJConfig,
cache_config: Optional[CacheConfig] = None,
quant_config: Optional[QuantizationConfig] = None,
):
super().__init__()
self.total_num_heads = config.num_attention_heads
self.hidden_size = config.hidden_size
self.head_size = self.hidden_size // self.total_num_heads
self.qkv_proj = QKVParallelLinear(
config.hidden_size,
self.head_size,
self.total_num_heads,
bias=False,
quant_config=quant_config,
)
self.out_proj = RowParallelLinear(
config.hidden_size,
config.hidden_size,
bias=False,
quant_config=quant_config,
)
tp_world_size = get_tensor_model_parallel_world_size()
assert self.total_num_heads % tp_world_size == 0
self.num_heads = self.total_num_heads // tp_world_size
scaling = self.head_size**-0.5
assert getattr(config, "rotary", True)
assert config.rotary_dim % 2 == 0
rope_theta = getattr(config, "rope_theta", 10000)
max_position_embeddings = getattr(config, "max_position_embeddings",
8192)
self.rotary_emb = get_rope(
self.head_size,
rotary_dim=config.rotary_dim,
max_position=max_position_embeddings,
base=rope_theta,
is_neox_style=False,
)
self.attn = Attention(self.num_heads,
self.head_size,
scaling,
cache_config=cache_config,
quant_config=quant_config)
def forward(
self,
position_ids: torch.Tensor,
hidden_states: torch.Tensor,
kv_cache: torch.Tensor,
attn_metadata: AttentionMetadata,
) -> torch.Tensor:
qkv, _ = self.qkv_proj(hidden_states)
q, k, v = qkv.chunk(chunks=3, dim=-1)
q, k = self.rotary_emb(position_ids, q, k)
attn_output = self.attn(q, k, v, kv_cache, attn_metadata)
attn_output, _ = self.out_proj(attn_output)
return attn_output
class GPTJMLP(nn.Module):
def __init__(
self,
intermediate_size: int,
config: GPTJConfig,
quant_config: Optional[QuantizationConfig] = None,
):
super().__init__()
hidden_size = config.n_embd
self.fc_in = ColumnParallelLinear(
hidden_size,
intermediate_size,
quant_config=quant_config,
)
self.fc_out = RowParallelLinear(
intermediate_size,
hidden_size,
quant_config=quant_config,
)
self.act = get_act_fn(config.activation_function, quant_config,
intermediate_size)
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
hidden_states, _ = self.fc_in(hidden_states)
hidden_states = self.act(hidden_states)
hidden_states, _ = self.fc_out(hidden_states)
return hidden_states
class GPTJBlock(nn.Module):
def __init__(
self,
config: GPTJConfig,
cache_config: Optional[CacheConfig] = None,
quant_config: Optional[QuantizationConfig] = None,
):
super().__init__()
inner_dim = (4 * config.n_embd
if config.n_inner is None else config.n_inner)
self.ln_1 = nn.LayerNorm(config.n_embd, eps=config.layer_norm_epsilon)
self.attn = GPTJAttention(config, cache_config, quant_config)
self.mlp = GPTJMLP(inner_dim, config, quant_config)
def forward(
self,
position_ids: torch.Tensor,
hidden_states: torch.Tensor,
kv_cache: torch.Tensor,
attn_metadata: AttentionMetadata,
) -> torch.Tensor:
residual = hidden_states
hidden_states = self.ln_1(hidden_states)
attn_output = self.attn(
position_ids=position_ids,
hidden_states=hidden_states,
kv_cache=kv_cache,
attn_metadata=attn_metadata,
)
mlp_output = self.mlp(hidden_states)
hidden_states = attn_output + mlp_output + residual
return hidden_states
class GPTJModel(nn.Module):
def __init__(
self,
config: GPTJConfig,
cache_config: Optional[CacheConfig] = None,
quant_config: Optional[QuantizationConfig] = None,
):
super().__init__()
self.config = config
self.embed_dim = config.n_embd
self.wte = VocabParallelEmbedding(
config.vocab_size,
self.embed_dim,
)
self.h = nn.ModuleList([
GPTJBlock(config, cache_config, quant_config)
for _ in range(config.n_layer)
])
self.ln_f = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_epsilon)
def forward(
self,
input_ids: torch.Tensor,
position_ids: torch.Tensor,
kv_caches: List[torch.Tensor],
attn_metadata: AttentionMetadata,
) -> torch.Tensor:
hidden_states = self.wte(input_ids)
for i in range(len(self.h)):
layer = self.h[i]
hidden_states = layer(
position_ids,
hidden_states,
kv_caches[i],
attn_metadata,
)
hidden_states = self.ln_f(hidden_states)
return hidden_states
class GPTJForCausalLM(nn.Module):
def __init__(
self,
config: GPTJConfig,
cache_config: Optional[CacheConfig] = None,
quant_config: Optional[QuantizationConfig] = None,
):
super().__init__()
self.config = config
self.quant_config = quant_config
assert not config.tie_word_embeddings
self.transformer = GPTJModel(config, cache_config, quant_config)
self.lm_head = ParallelLMHead(
config.vocab_size,
config.n_embd,
bias=True,
quant_config=quant_config,
)
self.logits_processor = LogitsProcessor(config.vocab_size)
self.sampler = Sampler()
def forward(
self,
input_ids: torch.Tensor,
positions: torch.Tensor,
kv_caches: List[torch.Tensor],
attn_metadata: AttentionMetadata,
intermediate_tensors: Optional[IntermediateTensors] = None,
) -> torch.Tensor:
hidden_states = self.transformer(input_ids, positions, kv_caches,
attn_metadata)
return hidden_states
def compute_logits(self, hidden_states: torch.Tensor,
sampling_metadata: SamplingMetadata) -> torch.Tensor:
logits = self.logits_processor(self.lm_head, hidden_states,
sampling_metadata, self.lm_head.bias)
return logits
def sample(
self,
logits: torch.Tensor,
sampling_metadata: SamplingMetadata,
) -> Optional[SamplerOutput]:
next_tokens = self.sampler(logits, sampling_metadata)
return next_tokens
def load_weights(self, weights: Iterable[Tuple[str, torch.Tensor]]):
stacked_params_mapping = [
# (param_name, shard_name, shard_id)
("qkv_proj", "q_proj", "q"),
("qkv_proj", "k_proj", "k"),
("qkv_proj", "v_proj", "v"),
("gate_up_proj", "gate_proj", 0),
("gate_up_proj", "up_proj", 1),
]
params_dict = dict(self.named_parameters())
for name, loaded_weight in weights:
if "attn.bias" in name or "attn.masked_bias" in name:
continue
for (param_name, weight_name, shard_id) in stacked_params_mapping:
if weight_name not in name:
continue
name = name.replace(weight_name, param_name)
# Skip loading extra bias for GPTQ models.
if name.endswith(".bias") and name not in params_dict:
continue
param = params_dict[name]
weight_loader = param.weight_loader
weight_loader(param, loaded_weight, shard_id)
break
else:
# Skip loading extra bias for GPTQ models.
if name.endswith(".bias") and name not in params_dict:
continue
param = params_dict[name]
weight_loader = getattr(param, "weight_loader",
default_weight_loader)
weight_loader(param, loaded_weight)