mirror of
https://git.datalinker.icu/vllm-project/vllm.git
synced 2026-01-02 03:14:00 +08:00
59 lines
1.9 KiB
Python
59 lines
1.9 KiB
Python
# SPDX-License-Identifier: Apache-2.0
|
|
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
|
|
|
from collections.abc import Sequence
|
|
|
|
from transformers import PreTrainedTokenizerBase
|
|
|
|
from vllm.entrypoints.openai.protocol import ChatCompletionRequest, DeltaMessage
|
|
from vllm.logger import init_logger
|
|
from vllm.reasoning import ReasoningParser
|
|
|
|
logger = init_logger(__name__)
|
|
|
|
|
|
class IdentityReasoningParser(ReasoningParser):
|
|
"""
|
|
Identity reasoning parser.
|
|
|
|
This parser does not attempt to parse or strip out reasoning tokens.
|
|
It treats the entire model output as content and ignores reasoning.
|
|
"""
|
|
|
|
def __init__(self, tokenizer: PreTrainedTokenizerBase, *args, **kwargs):
|
|
super().__init__(tokenizer, *args, **kwargs)
|
|
if not self.model_tokenizer:
|
|
raise ValueError(
|
|
"The model tokenizer must be passed to the ReasoningParser "
|
|
"constructor during construction."
|
|
)
|
|
|
|
def is_reasoning_end(self, input_ids: list[int]) -> bool:
|
|
# Always return True, since we never treat reasoning specially
|
|
return True
|
|
|
|
def extract_content_ids(self, input_ids: list[int]) -> list[int]:
|
|
# Identity: return all tokens as content
|
|
return input_ids
|
|
|
|
def extract_reasoning_streaming(
|
|
self,
|
|
previous_text: str,
|
|
current_text: str,
|
|
delta_text: str,
|
|
previous_token_ids: Sequence[int],
|
|
current_token_ids: Sequence[int],
|
|
delta_token_ids: Sequence[int],
|
|
) -> DeltaMessage | None:
|
|
# Just wrap delta_text as content, ignore reasoning
|
|
if delta_text:
|
|
return DeltaMessage(content=delta_text)
|
|
return None
|
|
|
|
def extract_reasoning(
|
|
self, model_output: str, request: ChatCompletionRequest
|
|
) -> tuple[str | None, str | None]:
|
|
# No reasoning separation: return None for reasoning,
|
|
# and full model_output as content
|
|
return None, model_output
|