Lucas Wilkinson e8697faf03
[V0 deprecation] Remove no longer used get_metadata_cls (#28370)
Signed-off-by: Lucas Wilkinson <lwilkins@redhat.com>
2025-11-10 14:32:09 +08:00

437 lines
15 KiB
Python

# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
from dataclasses import dataclass
import torch
from vllm.attention.backends.abstract import (
AttentionBackend,
AttentionImpl,
AttentionLayer,
AttentionType,
)
from vllm.config import VllmConfig
from vllm.logger import init_logger
from vllm.utils.math_utils import cdiv, next_power_of_2
logger = init_logger(__name__)
# TPU requires the head size to be a multiple of 128.
TPU_HEAD_SIZE_ALIGNMENT = 128
# Note: TPU can fp8 as storage dtype but doesn't support converting from uint8
# from to fp32 directly. That's why it has a dtype mapping different from GPU
TPU_STR_DTYPE_TO_TORCH_DTYPE = {
"half": torch.half,
"bfloat16": torch.bfloat16,
"float": torch.float,
"fp8": torch.float8_e4m3fn,
"fp8_e4m3": torch.float8_e4m3fn,
"fp8_e5m2": torch.float8_e5m2,
"int8": torch.int8,
"uint8": torch.uint8,
}
try:
import tpu_inference # noqa: F401
except ImportError:
# Lazy import torch_xla
import torch_xla.core.xla_builder as xb
import torch_xla.experimental.custom_kernel # noqa: F401
from torch.library import impl
from torch_xla._internal.jax_workarounds import requires_jax
from torch_xla.experimental.custom_kernel import XLA_LIB
@requires_jax
def kv_cache_update_op_impl(
kv: torch.Tensor,
slot_mapping: torch.Tensor,
kv_cache: torch.Tensor,
num_kv_update_slices: torch.Tensor,
page_size: int,
num_slices_per_block: int,
):
from vllm.attention.ops.pallas_kv_cache_update import kv_cache_update
new_kv_cache = xb.call_jax(
kv_cache_update,
(kv, slot_mapping, kv_cache, num_kv_update_slices),
{"page_size": page_size, "num_slices_per_block": num_slices_per_block},
)
return new_kv_cache
XLA_LIB.define(
"kv_cache_update_op(Tensor kv, Tensor slot_mapping,"
"Tensor kv_cache, Tensor num_kv_update_slices, int page_size,"
"int num_slices_per_block)"
"-> Tensor",
)
@impl(XLA_LIB, "kv_cache_update_op", "XLA")
def kv_cache_update_op_xla(
kv: torch.Tensor,
slot_mapping: torch.Tensor,
kv_cache: torch.Tensor,
num_kv_update_slices: torch.Tensor,
page_size: int,
num_slices_per_block: int,
) -> torch.Tensor:
new_kv_cache = kv_cache_update_op_impl(
kv,
slot_mapping,
kv_cache,
num_kv_update_slices,
page_size,
num_slices_per_block,
)
return new_kv_cache
@impl(XLA_LIB, "kv_cache_update_op", "CompositeExplicitAutograd")
def kv_cache_update_op_non_xla(
kv: torch.Tensor,
slot_mapping: torch.Tensor,
kv_cache: torch.Tensor,
num_kv_update_slices: torch.Tensor,
page_size: int,
num_slices_per_block: int,
) -> torch.Tensor:
return kv_cache
class PallasAttentionBackend(AttentionBackend):
@staticmethod
def get_name() -> str:
return "PALLAS"
@staticmethod
def get_impl_cls() -> type["PallasAttentionBackendImpl"]:
return PallasAttentionBackendImpl
@staticmethod
def get_kv_cache_shape(
num_blocks: int,
block_size: int,
num_kv_heads: int,
head_size: int,
cache_dtype_str: str = "auto",
) -> tuple[int, ...]:
padded_head_size = (
cdiv(head_size, TPU_HEAD_SIZE_ALIGNMENT) * TPU_HEAD_SIZE_ALIGNMENT
)
return (num_blocks, block_size, num_kv_heads * 2, padded_head_size)
@staticmethod
def swap_blocks(
src_kv_cache: torch.Tensor,
dst_kv_cache: torch.Tensor,
src_to_dst: torch.Tensor,
) -> None:
raise RuntimeError("swap_blocks is not used for the TPU backend.")
# In recent TPU generations, up to v6e, the SMEM size is 1MB. The
# block_tables within the PallasMetadata constitute almost the entire SMEM
# requirement. Its size is max_num_seqs * num_page_per_seq * 4 (Int). Here
# we simply make sure that the size is smaller than half of SMEM capacity.
@staticmethod
def get_min_page_size(vllm_config: VllmConfig) -> int:
max_num_page_per_req = (
1024 * 1024 // 2 // vllm_config.scheduler_config.max_num_seqs // 4
)
min_page_size = cdiv(
vllm_config.model_config.max_model_len, max_num_page_per_req
)
min_page_size = 1 << (min_page_size - 1).bit_length()
return min_page_size
@staticmethod
def get_max_num_seqs(model_len: int, page_size: int) -> int:
num_page_per_req = cdiv(model_len, page_size)
return 1024 * 1024 // 2 // num_page_per_req // 4
# TPU has limited SREGs (scalar registers), if page_size is too small, we
# can spill SREGs easily which leads to bad performance. The strategy we
# apply here is trying to split max-model-len to 16 pages which make the
# spill less likely. Meanwhile we make sure the page size is in [16, 256].
@staticmethod
def get_page_size(vllm_config: VllmConfig) -> int:
# TODO: This is a temporary fix for vmem OOM.
# For long model length, we use 16 page-size to avoid too much
# VMEM spill. A more robust solution should be implemented to
# handle VREG spills.
if vllm_config.model_config.max_model_len > 8192:
return 16
page_size = next_power_of_2(vllm_config.model_config.max_model_len) // 16
if page_size <= 16:
return 16
if page_size >= 256:
return 256
return page_size
@dataclass
class PallasMetadata:
# NOTE(sang): Definition of context_len, query_len, and seq_len.
# |---------- N-1 iteration --------|
# |---------------- N iteration ---------------------|
# |- tokenA -|......................|-- newTokens ---|
# |---------- context_len ----------|
# |-------------------- seq_len ---------------------|
# |-- query_len ---|
# Used in the PallasAttentionBackendImpl
slot_mapping: torch.Tensor
block_tables: torch.Tensor
context_lens: torch.Tensor
query_start_loc: torch.Tensor
num_seqs: torch.Tensor
num_kv_update_slices: torch.Tensor
num_slices_per_kv_cache_update_block: int
class PallasAttentionBackendImpl(AttentionImpl):
def __init__(
self,
num_heads: int,
head_size: int,
scale: float,
num_kv_heads: int,
alibi_slopes: list[float] | None,
sliding_window: int | None,
kv_cache_dtype: str,
logits_soft_cap: float | None = None,
attn_type: str = AttentionType.DECODER,
kv_sharing_target_layer_name: int | None = None,
) -> None:
self.num_heads = num_heads
self.head_size = head_size
self.scale = float(scale)
self.num_kv_heads = num_kv_heads
self.sliding_window = sliding_window
self.logits_soft_cap = logits_soft_cap
self.kv_sharing_target_layer_name = kv_sharing_target_layer_name
self.num_queries_per_kv = self.num_heads // self.num_kv_heads
if alibi_slopes is not None:
raise NotImplementedError("Alibi slopes is not supported.")
if attn_type != AttentionType.DECODER:
raise NotImplementedError(
"Encoder self-attention and "
"encoder/decoder cross-attention "
"are not implemented for "
"PallasAttentionBackendImpl"
)
self.kv_cache_quantized_dtype = None
if kv_cache_dtype != "auto":
self.kv_cache_quantized_dtype = TPU_STR_DTYPE_TO_TORCH_DTYPE.get(
kv_cache_dtype.lower().strip()
)
def forward(
self,
layer: AttentionLayer,
query: torch.Tensor,
key: torch.Tensor,
value: torch.Tensor,
kv_cache: torch.Tensor,
attn_metadata: PallasMetadata,
output: torch.Tensor | None = None,
output_scale: torch.Tensor | None = None,
output_block_scale: torch.Tensor | None = None,
) -> torch.Tensor:
"""Forward pass with Pallas attention.
Args:
query: shape = [num_tokens, num_heads * head_size]
key: shape = [num_tokens, num_kv_heads * head_size]
value: shape = [num_tokens, num_kv_heads * head_size]
kv_cache: shape =
[num_blocks, block_size, num_kv_heads * 2, head_size]
attn_metadata: Metadata for attention.
Returns:
shape = [num_tokens, num_heads * head_size]
"""
if output_scale is not None or output_block_scale is not None:
raise NotImplementedError(
"fused output quantization is not yet supported"
" for PallasAttentionBackendImpl"
)
# For determine_available_memory case.
if kv_cache.numel() == 0:
if output is None:
output = torch.ones_like(query)
return output
num_tokens, hidden_size = query.shape
query = query.view(num_tokens, self.num_heads, self.head_size)
key = key.view(-1, self.num_kv_heads, self.head_size)
value = value.view(-1, self.num_kv_heads, self.head_size)
if self.head_size % TPU_HEAD_SIZE_ALIGNMENT != 0:
padded_head_size = (
cdiv(self.head_size, TPU_HEAD_SIZE_ALIGNMENT) * TPU_HEAD_SIZE_ALIGNMENT
)
query = torch.nn.functional.pad(
query, (0, padded_head_size - self.head_size), value=0.0
)
key = torch.nn.functional.pad(
key, (0, padded_head_size - self.head_size), value=0.0
)
value = torch.nn.functional.pad(
value, (0, padded_head_size - self.head_size), value=0.0
)
if self.kv_sharing_target_layer_name is None and kv_cache.numel() > 0:
# Write input keys and values to the KV cache.
# Skip this if sharing KV cache with an earlier attention layer.
slot_mapping = attn_metadata.slot_mapping
write_to_kv_cache(
key,
value,
kv_cache,
slot_mapping,
attn_metadata.num_slices_per_kv_cache_update_block,
attn_metadata.num_kv_update_slices,
self.kv_cache_quantized_dtype,
layer._k_scale_float,
layer._v_scale_float,
)
if self.kv_cache_quantized_dtype is not None and (
layer._k_scale_float == 0.0 or layer._v_scale_float == 0.0
):
raise ValueError("k_scale_float and v_scale_float must be non-zero")
output = torch.ops.xla.ragged_paged_attention(
query,
kv_cache,
attn_metadata.context_lens,
attn_metadata.block_tables,
attn_metadata.query_start_loc,
attn_metadata.num_seqs,
# By default, the system utilizes optimized block size and
# vmem_limit_bytes parameters from the kernel repository. However,
# these can be manually adjusted for debugging if necessary.
num_kv_pages_per_block=None,
num_queries_per_block=None,
vmem_limit_bytes=None,
use_kernel=True,
sm_scale=self.scale,
sliding_window=self.sliding_window,
soft_cap=self.logits_soft_cap,
k_scale=layer._k_scale_float,
v_scale=layer._v_scale_float,
)
if self.head_size % TPU_HEAD_SIZE_ALIGNMENT != 0:
output = output[:, :, : self.head_size]
return output.reshape(num_tokens, hidden_size)
def write_to_kv_cache(
key: torch.Tensor,
value: torch.Tensor,
kv_cache: torch.Tensor,
slot_mapping: torch.Tensor,
num_slices_per_kv_cache_update_block: int,
num_kv_update_slices: torch.Tensor,
kv_cache_quantized_dtype: torch.dtype | None = None,
k_scale: float = 1.0,
v_scale: float = 1.0,
) -> None:
"""Write the key and values to the KV cache.
Args:
key: shape = [num_tokens, num_kv_heads, head_size]
value: shape = [num_tokens, num_kv_heads, head_size]
kv_cache: shape = [num_blocks, block_size, num_kv_heads * 2, head_size]
num_slices_per_kv_cache_update_block: int
"""
_, page_size, num_combined_kv_heads, head_size = kv_cache.shape
head_size = cdiv(head_size, TPU_HEAD_SIZE_ALIGNMENT) * TPU_HEAD_SIZE_ALIGNMENT
if kv_cache_quantized_dtype is not None:
dtype_info = torch.finfo(kv_cache_quantized_dtype)
key = key.to(torch.float32) / k_scale
# NOTE: clamp is added here to avoid out of range of quantized dtype
key = torch.clamp(key, dtype_info.min, dtype_info.max)
key = key.to(kv_cache_quantized_dtype)
value = value.to(torch.float32) / v_scale
value = torch.clamp(value, dtype_info.min, dtype_info.max)
value = value.to(kv_cache_quantized_dtype)
kv = torch.cat([key, value], axis=-1).reshape(-1, num_combined_kv_heads, head_size)
torch.ops.xla.dynamo_set_buffer_donor_(kv_cache, True)
kv_cache = kv_cache.flatten(0, 1)
new_kv_cache = torch.ops.xla.kv_cache_update_op(
kv,
slot_mapping,
kv_cache,
num_kv_update_slices,
page_size,
num_slices_per_kv_cache_update_block,
)
# NOTE: the in-place copy will be optimized away by XLA compiler.
kv_cache.copy_(new_kv_cache)
# We can move this function to a common utils file if it's also useful for other
# hardware.
def dtype_bits(dtype: torch.dtype):
if dtype.is_floating_point:
try:
return torch.finfo(dtype).bits
except TypeError:
pass
elif dtype.is_complex:
if dtype is torch.complex32:
return 32
elif dtype is torch.complex64:
return 64
elif dtype is torch.complex128:
return 128
else:
try:
return torch.iinfo(dtype).bits
# torch.iinfo cannot support int4, int2, bits8...
except TypeError:
pass
str_dtype = str(dtype)
# support torch.int4, torch.int5, torch.uint5...
if str_dtype.startswith("torch.int") or str_dtype.startswith("torch.uint"):
return int(str_dtype[-1])
raise TypeError(f"Getting the bit width of {dtype} is not supported")
def get_dtype_packing(dtype):
bits = dtype_bits(dtype)
if 32 % bits != 0:
raise ValueError(
f"The bit width must be divisible by 32, but got bits={bits}, "
"dtype={dtype}"
)
return 32 // bits
def get_page_size_bytes(
block_size: int, num_kv_heads: int, head_size: int, kv_cache_dtype: torch.dtype
) -> int:
"""Returns the size in bytes of one page of the KV cache."""
padded_head_size = (
cdiv(head_size, TPU_HEAD_SIZE_ALIGNMENT) * TPU_HEAD_SIZE_ALIGNMENT
)
num_combined_kv_heads = num_kv_heads * 2
# NOTE: for the implicit padding in XLA
packing = get_dtype_packing(kv_cache_dtype)
num_combined_kv_heads = cdiv(num_combined_kv_heads, packing) * packing
kv_cache_dtype_bits = dtype_bits(kv_cache_dtype)
return (
block_size * num_combined_kv_heads * padded_head_size * kv_cache_dtype_bits // 8
)